KIP-167: Add interface for the state store restoration
process

® Motivation
® Public Interfaces
o Default Implementations
O StateRestoreListener Use Cases
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Current state: Accepted [VOTE]: 167 Add interface for the state store restoration process

Discussion thread:here

JIRA: .& Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Currently, when restoring a state store in a Kafka Streams application, we put one key-value pair at a time into the store.

This proposal aims to make this recovery more efficient for certain persistent stores that can be optimized for bulk writes by adding a new interface with
"restoreAll" functionality.

Additionally this proposal will add an interface used as an event listener to do the following:
1. Notification when the restoration (bulk or not) process starts.
2. Intermediate notification as batches are restored with number of records and last offset restored.
3. Notification when the restoration (again bulk or not) process ends.
The proposed listener interface will be available for two use cases:
1. External or user notification of state restoration progress for monitoring purposes when the application is fully online. This will require adding a
setter method on the Kaf kaSt r eans instance described in the next section.
2. Internal or per state store notification so the state store can perform any required resource management at the beginning or end of the
restoration. Closing and re-opening a RocksDB database to use bulk loading configurations is one intended result of providing this listener.

We'll outline these use cases in more detail below.

e‘i\. Unable to render Jira issues macro, execution
NOTE: This work is building off ideas originally proposed in and will be
error.

incorporated into this KIP.

Public Interfaces

This KIP will introduce the following interfaces:

http://search-hadoop.com/m/Kafka/uyzND1cp8oh1vzNwx1?subj=Re+VOTE+KIP+167+Add+interface+for+the+state+store+restoration+process
http://mail-archives.apache.org/mod_mbox/kafka-dev/201706.mbox/browser
http://mail-archives.apache.org/mod_mbox/kafka-dev/201706.mbox/%3CCAF7WS%2BoovbwEQw-i%2BaPQDVHj2JUyQqOWRNg%2BRG37qvgDu5VW9A%40mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E

® The Bat chi ngSt at eRest or eCal | back interface.
® The St at eRest or eLi st ener interface.

public interface Batchi ngStateRestoreCall back extends StateRestoreCallback {

void restoreAll (Coll ection<KeyVal ue<byte[], byte []>> records);

This interface will allow for state stores to implement a bulk loading approach during the restore phase. The St at eRest or eCal | back interface is kept
as is for backwards compatibility

public interface StateRestorelistener {

voi d onRestoreStart(TopicPartition topicPartition, StateStore storeName, |ong startingOffset, |ong
endCf fset);

voi d onBat chRest ored(TopicPartition topicPartition, String storeNanme, |ong batchEndOf fset, |ong
nunRest or ed) ;

voi d onRest oreEnd(Topi cPartition topicPartition, String storeNane, |ong total Restored);

The onBat chRest or ed method is called after records retrieved from each pol | () call have been restored. This is to give users a sense of progress
being made in the restore process.

The number of times onBat chRest or ed is called is (Tot al records in change 1 og / MAX_ POLL_RECORDS) .

The changes also include adding a set t er method on the Kaf kaSt r eans object, named set G obal St at eRest or eLi st ener to reinforce the fact the
listener is for the entire application

public void setd obal StateRestoreListener(final StateRestorelistener stateRestoreListener)

Default Implementations

As a convenience for users wanting to leverage the St at er Rest or eLi st ener for state store callbacks as part of this KIP we'll also add the following
abstract classes:

For single action state restoration, there is Abst ract Not i f yi ngRest or eCal | back

public abstract class AbstractNotifyingRestoreCallback inplenments StateRestoreCallback, StateRestorelistener {

@verride
public void onRestoreStart(TopicPartition topicPartition, String storeNane, long startingOffset, |ong

endi ngOf fset) {

}
@verride

public void onBatchRestored(TopicPartition topicPartition, String storeNane, |ong batchEndO fset, |ong
nunRest ored) {

}

@verride
public void onRestoreEnd(TopicPartition topicPartition, String storeName, |ong total Restored) {

}

For the corresponding bulk action state restoration, we have Abst r act Bat chi ngRest or eCal | back

public abstract class AbstractBatchi ngRestoreCal | back i npl enents Bat chi ngSt at eRest or eCal | back,
St at eRest or eLi stener {

@verride
public void restore(byte[] key, byte[] value) {
t hrow new UnsupportedQperati onException("Single restore not supported");

}

@verride
public void onRestoreStart(TopicPartition topicPartition, String storeNane, |long startingOffset, |ong
endi ngOf fset) {

}

@verride
public void onBatchRestored(TopicPartition topicPartition, String storeName, |ong batchEndOf fset, |ong
nunRest ored) {

}
@verride

public void onRestoreEnd(TopicPartition topicPartition, String storeNane, |ong total Restored) {

}

StateRestoreListener Use Cases

The first use case is user updates of the restore progress - In this case users of a Kafka Streams application want to receive updates of the restoration
progress and publish those updates to a Ul for example. The St at eRest or eLi st ener set via the Kaf kaSt r eans.

set A obal St at eRest or eLi st ener method functions as a single, global listener reporting on the
restoration status for all state stores in an application. Additionally, the St at eRest or eLi st ener also
reports on the bootstrapping progress of any A obal KTabl es defined in the application.

The second use case is internal state store management, closing and re-opening a RocksDB instance for bulk loading with different configuration settings
for example. In this case implementors of a custom store want notification of restoration start, progress and ending for state manage purposes. In this
case, the St at eRest or eLi st ener implementation is used internally by the given state store. In this use case, users can specify a St at eSt or eLi st en
er per store, but the intent here is not for reporting but for internal state management.

To use the listener functionality users will implement the St at eRest or eLi st ener interface in addition to the St at eRest or eCal | back or Bat chi ngSt
at eRest or eCal | back interfaces when constructing their callbacks. Providing the callback is still done via the Pr ocessor Cont ext . r egi st er
method.

During the restoration process the type of the r est or eCal | back is inspected and if it implements the St at eRest or eLi st ener then the listener
methods are executed. With this in mind, the St at eSt or eLi st ener API can be called in two places (although two different implementations);

1. If the instance level listener is set via the KSt eam set St at eRest or eLi st ener method, then that listener will be executed for each pol | call.
2. If the provided state-store-level callback extends the St at eRest or eLi st ener interface, then those listener methods triggered for each poll call
that is restoring that specific store as well.

Compatibility, Deprecation, and Migration Plan

© Since the Bat chi ngSt at eResor eCal | back extends the St at eRest or eCal | back there should be no impact to classes already
implementing this interface.

© The St at eRest or eCont ext interface is an addition to the code base so no impact is expected.

O The addition of a setter method on the Kaf kaSt r eans object adds no impact to existing code.

o Abstract classes implementing the different callback approaches and the St at eRest or eLi st ener interface with no-op methods are
provided.

Rejected Alternatives

N/A

	KIP-167: Add interface for the state store restoration process

