
Global sums for currently active sessions
Status: Draft
Intent:

transaction sums per customer session (simple using session-windowed aggregation)
global transaction sums for all customer sessionscurrently active

builder
 .stream(/*key serde*/, /*transaction serde*/, "transaciton-topic")

 .groupByKey(/*key serde*/, /*transaction serde*/)

 .aggregate(
 () -> /*empty aggregate*/,
 aggregator(),
 merger(),
 SessionWindows.with(SESSION_TIMEOUT_MS).until(SESSION_TIMEOUT_MS*2),
 /* aggregate serde */,
 txPerCustomerSumStore() // this store can be queried for per customer session data)

 .toStream()

 .filter(((key, value) -> value != null)) // tombstones only come when a session is merged into a bigger
session, so ignore them

 // the below map/groupByKey/reduce operations are to only propagate updates to the latest session per customer
to downstream

 .map((windowedCustomerId, agg) -> // this moves timestamp from the windowed key into the value
 // so that we can group by customerId only and reduce to the later value
 new KeyValue<>(
 windowedCustomerId.key(), // just customerId
 new WindowedAggsImpl(// this is just like a tuple2 but with nicely named accessors: timestamp() and
aggs()
 windowedCustomerId.window().end(),
 agg
)
)
)
 .groupByKey(/*key serde*/, /*windowed aggs serde*/) // key is just customerId
 .reduce(// take later session value and ignore any older - downstream only cares about current sessions
 (val, agg) -> val.timestamp() > agg.timestamp() ? val : agg,
 TimeWindows.of(SESSION_TIMEOUT_MS).advanceBy(SESSION_TIMOUT_DELAY_TOLERANCE_MS),
 "latest-session-windowed"
)

 .groupBy((windowedCustomerId, timeAndAggs) -> // calculate totals with maximum granularity, which is per-
partition
 new KeyValue<>(
 new Windowed<>(
 windowedCustomerId.key().hashCode() % PARTITION_COUNT_FOR_TOTALS, // KIP-159 would come in handy here,
to access partition number instead
 windowedCustomerId.window() // will use this in the interactive queries to pick the oldest not-yet-
expired window
),
 timeAndAggs.aggs()
),
 new SessionKeySerde<>(Serdes.Integer()),
 /* aggregate serde */
)

 .reduce(
 (val, agg) -> agg.add(val),
 (val, agg) -> agg.subtract(val),
 txTotalsStore() // this store can be queried to get totals per partition for all active sessions
);

builder.globalTable(
 new SessionKeySerde<>(Serdes.Integer()),
 /* aggregate serde */,
 changelogTopicForStore(TRANSACTION_TOTALS), "totals");
// this global table puts per partition totals on every node, so that they can be easily summed for global
totals, picking the oldest not-yet-expired window

TODO: put in StreamParitioners (with KTable.through variants added in KAFKA-5045) to avoid re-partitioning where
I know it's unnecessary.

The idea behind the % bit is that I want to first do summation with max parallelism and minimize the work needed PARTITION_COUNT_FOR_TOTALS
downstream. So I calculate a per-partition sum first to limit the updates that the totals topic will receive and the summing work done by the interactive
queries on the global store.

	Global sums for currently active sessions

