
Windowed aggregations over successively increasing
timed windows
Status: Draft

KTable<Windowed<Key>, Value> oneMinuteWindowed = // where Key and Value stand for your actual key and value
types

 yourKStream

 .groupByKey()

 .reduce(/*your adder*/, TimeWindows.of(60*1000, 60*1000), "store1m");
 //where your adder can be as simple as (val, agg) -> agg + val
 //for primitive types or as complex as you need

KTable<Windowed<Key>, Value> fiveMinuteWindowed =

 oneMinuteWindowed
 .groupBy((windowedKey, value) ->
 new KeyValue<>(
 new Windowed<>(
 windowedKey.key(),
 new Window<>(
 windowedKey.window().start() /1000/60/5 *1000*60*5,
 windowedKey.window().start() /1000/60/5 *1000*60*5 + 1000*60*5
 // the above rounds time down to a timestamp divisible by 5 minutes
)
),
 value
),
 /* your key serde */,
 /* your value serde */
)
 .reduce(/*your adder*/, /*your subtractor*/, "store5m");
 // where your subtractor can be as simple as (val, agg) -> agg - val for primitive types
 // or as complex as you need,
 // just make sure you get the parameter order right, subtraction is not commutative!

KTable<Windowed<Key>, Value> fifteenMinuteWindowed =

 fiveMinuteWindowed

 .groupBy((windowedKey, value) ->
 new KeyValue<>(
 new Windowed<>(
 windowedKey.key(),
 new Window<>(
 windowedKey.window().start() /1000/60/15 *1000*60*15,
 windowedKey.window().start() /1000/60/15 *1000*60*15 + 1000*60*15
 // the above rounds time down to a timestamp divisible by 15 minutes
)
),
 value
),
 /* your key serde */,
 /* your value serde */
)
 .reduce(/*your adder*/, /*your subtractor*/, "store15m");

KTable<Windowed<Key>, Value> sixtyMinuteWindowed =

 fifteeenMinuteWindowed

 .groupBy((windowedKey, value) ->
 new KeyValue<>(
 new Windowed<>(
 windowedKey.key(),

 new Window<>(
 windowedKey.window().start() /1000/60/60 *1000*60*60,
 windowedKey.window().start() /1000/60/60 *1000*60*60 + 1000*60*60
 // the above rounds time down to a timestamp divisible by 60 minutes
)
),
 value
),
 /* your key serde */,
 /* your value serde */
)

 .reduce(/*your adder*/, /*your subtractor*/, "store60m");

TODO: to mitigate infinite state store growth (until re-balance rebuilds it from the changelog) you can implement the Windowed key serde to store the
timestamp(s) before the actual record key and periodically do a ranged query on each of the state stores to find and delete all data older than (using x
punctuate() inside a Processor). TBC...

	Windowed aggregations over successively increasing timed windows

