
Old KIP-179 - Change ReassignPartitionsCommand to use
AdminClient

Note this was initially erroneously assigned as KIP-178, which was already taken, and has been reassigned KIP-179.

Status
Motivation
Public Interfaces
Proposed Changes

kafka-reassign-partitions.sh and ReassignPartitionsCommand
AdminClient: alterTopics()
AdminClient: replicaStatus()
Authorization
Network Protocol: AlterTopicsRequest and AlterTopicsResponse
Policy
Network Protocol: ReplicaStatusRequest and ReplicaStatusResponse

Implementation
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion [One of "Under Discussion", "Accepted", "Rejected"]

Discussion thread: and (when assigned KIP-179) (when initially misnumbered as KIP-178)here here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Describe the problems you are trying to solve.

Firstly, the (which is used by the tool) talks directly to ZooKeeper. This prevents ReassignPartitionsCommand kafka-reassign-partitions.sh
the tool being used in deployments where only the brokers are exposed to clients (i.e. where the zookeeper servers are intentionally not exposed). In
addition, there is a general push to refactor/rewrite/replace tools which need ZooKeeper access with equivalents which use the API. Thus it AdminClient
is necessary to change the so that it no longer talks to ZooKeeper directly, but via an intermediating broker. Similar work ReassignPartitionsCommand
is needed for the tool (which can also change assignments and numbers of partitions and replicas), so common and kafka-topics.sh AdminClient
protocol APIs are desirable.

Secondly, currently has no proper facility to report progress of a reassignment; can be used periodically to ReassignPartitionsCommand --verify
check whether the request assignments have been achieved. It would be useful if the tool could report progress better.

Public Interfaces
Briefly list any new interfaces that will be introduced as part of this proposal or any existing interfaces that will be removed or changed. The purpose of this
section is to concisely call out the public contract that will come along with this feature.

A public interface is any change to the following:

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201707.mbox/%3cCAMd5YszudP+-8z5KTbFh6JscT2p4xFi1=VZWWX+5DccPxRyavw@mail.gmail.com%3e
http://mail-archives.apache.org/mod_mbox/kafka-dev/201707.mbox/%3CCAMd5Ysy3bY7Fq2xA3sk6BWW6%3D9TjT4%2Bya7mufRf6Wgre-S-UPg%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-5601

1.

2.

1.

Binary log format
The network protocol and api behavior
Any class in the public packages under clientsConfiguration, especially client configuration

org/apache/kafka/common/serialization
org/apache/kafka/common
org/apache/kafka/common/errors
org/apache/kafka/clients/producer
org/apache/kafka/clients/consumer (eventually, once stable)

Monitoring
Command line tools and arguments
Anything else that will likely break existing users in some way when they upgrade

Two new network protocol APIs will be added:

 and AlterTopicsRequest AlterTopicsResponse
 and ReplicaStatusRequest ReplicaStatusResponse

The API will have two new methods added (plus overloads for options):AdminClient

alterTopics(Collection<AlterTopics>)
replicaStatus(Collection<Replica> replicas)

The options accepted by command will change:kafka-reassign-partitions.sh

--zookeeper will be deprecated, with a warning message
a new option will be added--bootstrap-server
a new action option will be added--progress

Proposed Changes
Describe the new thing you want to do in appropriate detail. This may be fairly extensive and have large subsections of its own. Or it may be a few
sentences. Use judgement based on the scope of the change.

kafka-reassign-partitions.sh and ReassignPartitionsCommand

The option will be retained and will:--zookeeper

Cause a deprecation warning to be printed to standard error. The message will say that the option will be removed in a future --zookeeper
version and that is the replacement option.--bootstrap-server
Perform the reassignment via ZooKeeper, as currently.

A new option will be added and will:--bootstrap-server

Perform the reassignment via the given intermediating broker.

Using both and in the same command will produce an error message and the tool will exit without doing the --zookeeper --bootstrap-server
intended operation.

It is anticipated that a future version of Kafka would remove support for the option.--zookeeper

A new action option will be added. This will only be supported when used with . If used with the --progress --bootstrap-server --zookeeper
command will produce an error message and the tool will exit without doing the intended operation. will report on the synchronisation of each --progress
of the partitions and brokers in the reassignment given via the option--reassignment-json-file

For example:

If the following command is used to start a reassignment
bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9878 \
 --reassignment-json-file expand-cluster-reassignment.json \
 --execute

then the following command will print the progress of
that reassignment, then exit immediately
bin/kafka-reassign-partitions.sh --bootstrap-server localhost:9878 \
 --reassignment-json-file expand-cluster-reassignment.json \
 --progress

That might print something like the following:

Topic Partition Broker Status

my_topic 0 0 In sync
my_topic 0 1 Behind: 10456 messages behind
asdf 0 1 Unknown topic
my_topic 42 1 Unknown partition
my_topic 0 42 Unknown broker
my_topic 1 0 Broker does not host this partition

Internally, the will be refactored to support the above changes to the options. An interface will abstract the commands ReassignPartitionsCommand
currently issued directly to zookeeper.

There will be an implementation which makes the current calls to ZooKeeper, and another implementation which uses the API described AdminClient
below.

In all other respects, the public API of will not be changed.ReassignPartitionsCommand

AdminClient: alterTopics()

The following methods will be added to to support the ability to reassign partitions:AdminClient

/**
 * Request alteration of the given topics. The request can change the number of
 * partitions, replication factor and/or the partition assignments.
 * This can be a long running operation as replicas are migrated between brokers,
 * therefore the returned result conveys whether the alteration has been
 * started, not that it is complete. Progress information
 * can be obtained by calling the lead broker's
 * {@link #replicaStatus(Collection)}.
 */
public AlterTopicsResult alterTopics(Collection<AlteredTopic> alteredTopics)
public AlterTopicsResult alterTopics(Collection<AlteredTopic> alteredTopics, AlterTopicsOptions options)

Where:

public class AlteredTopic {
 public AlteredTopic(String name, int numPartitions, int replicationFactor, Map<Integer,List<Integer>>
replicasAssignment) {
 // ...
 }
 /** The name of the topic to alter. */
 public String name();
 /** The new number of partitions, or -1 if the number of partitions should not be changed. */
 public int numPartitions();
 /** The new replication factor, or -1 if the replication factor should not be changed. */
 public short replicationFactor();
 /**
 * The new assignments of partition to brokers, or the empty map
 * if the broker should assign replicas automatically.
 */
 Map<Integer,List<Integer>> replicasAssignment();
}

public class AlterTopicsOptions {
 public AlterTopicsOptions validateOnly(boolean validateOnly);
 public boolean validateOnly();
 public AlterTopicsOptions timeoutMs(long timeoutMs);
 public long timeoutMs();
 }

public class AlterTopicsResult {
 // package-access constructor
 /** A mapping of the name of a requested topic to the error for that topic. */
 Map<String, KafkaFuture<Void>> values();
 /** Return a future which succeeds if all the topic alterations were accepted. */
 KafkaFuture<Void> all();
}

AdminClient: replicaStatus()

The following methods will be added to to support the progress reporting functionality:AdminClient

/**
 * Query the replication status of the given partitions.
 */
public ReplicaStatusResult replicaStatus(Collection<TopicPartition> replicas)
public ReplicaStatusResult replicaStatus(Collection<TopicPartition> replicas, ReplicaStatusOptions options)

Where:

public class ReplicaStatusOptions {

}

public class ReplicaStatusResult {
 public KafkaFuture<Map<TopicPartition, List<ReplicaStatus>>> all()
}

/**
 * Represents the replication status of a partition
 * on a particular broker.
 */
public class ReplicaStatus {
 /** The topic about which this is the status of */
 String topic()
 /** The partition about which this is the status of */
 int partition()
 /** The broker about which this is the status of */
 int broker()

 /**
 * The time (as milliseconds since the epoch) that
 * this status data was collected. In general this may
 * be some time before the replicaStatus() request time.
 */
 public long statusTime()

 /**
 * The number of messages that the replica on this broker is behind
 * the leader.
 */
 public long lag()

}

Authorization

With broker-mediated reassignment it becomes possible limit the authority to perform reassignment to something finer-grained than "anyone with access to
zookeeper".

The reasons for reassignment are usually operational. For example, migrating partitions to new brokers when expanding the cluster, or attempting to find a
more balanced assignment (according to some notion of balance). These are cluster-wide considerations and so authority should be for the reassign
operation being performed on the cluster. Therefore will require on the .alterTopics() ClusterAction CLUSTER

replicaStatus() will require on the .Describe CLUSTER

Network Protocol: and AlterTopicsRequest AlterTopicsResponse

An will initiate the process of topic alteration/partition reassignmentAlterTopicsRequest

AlterTopicsRequest => [alter_topic_requests] validate_only
 alter_topic_requests => topic num_partitions replication_factor [partition_assignment]
 topic => STRING
 num_partitions => INT32
 replication_factor => INT16
 partition_assignment => partition_id brokers
 partition_id => INT32
 brokers => [INT32]
 validate_only => BOOLEAN
 timeout => INT32

Where

FIELD DESCRIPTION

topic the topic name

num_partition the number of partitions. A of -1 that would mean "no change"num_partitions

replication_factor the replication factor. A of -1 would mean "no change"replication_factor

partition_id the partition id

brokers the ids of the assigned brokers for this partition

validate_only true to just validate the request, but not actually alter the topics

timeout the timeout, in ms, to wait for the topic to be altered.

An empty would mean that the broker should calculate a suitable assignment. Such broker calculated assignment is unlikely to partition_assignment
be balanced.

It is not necessary to send an A to the leader for a given partition. Any broker will do.lterTopicsRequest

The enumerates those topics in the request, together with any error in initiating alteration:AlterTopicsResponse

AlterTopicsResponse => throttle_time_ms [topic_errors]
 throttle_time_ms => INT32
 topic_errors => topic error_code error_message
 topic => STRING
 error_code => INT16
 error_message => NULLABLE_STRING

Where

Field Description

throttle_time_ms duration in milliseconds for which the request was throttled

topic the topic name

error_code the error code for altering this topic

error_message detailed error information

Possible values for :error_code

CLUSTER_AUTHORIZATION_FAILED (31) Authorization failed
INVALID_TOPIC_EXCEPTION (17) If the topic doesn't exist
INVALID_PARTITIONS (37) If the was invalidnum_partitions
INVALID_REPLICATION_FACTOR (38) If the was invalidreplication_factor
UNKNOWN_MEMBER_ID (25) If any broker ids in the included an unknown broker idpartition_assignment
INVALID_REQUEST (42) If trying to modify the partition assignment and the number of partitions or the partition assignment and the replication
factor in the same request. Or if duplicate s appeared in the request.topic
PARTITION_REASSIGNMENT_IN_PROGRESS (new)
INVALID_REPLICA_ASSIGNMENT (39) If a partition, replica or broker id in the doesn't exist or is incompatible with partition_assignment
the requested and /or . The would contain further information.num_partitions replication_factor error_message
NONE (0) If the request was successful and the alteration/reassignment has been started.

As currently, it will not be possible to have multiple reassignments running concurrently, hence the addition of the PARTITION_REASSIGNMENT_IN_PROGR
 error code.ESS

Policy

The existing can be used to apply a cluster-wide policy on topic configuration at the point of creation via the CreateTopicPolicy create.topic.
 config property. To avoid an obvious loophole, it is necessary to also be able to apply a policy to topic alteration. Maintaining two policy.class.name

separate policies in sync is a burden both in terms of class implementation and configuring the policy. It seems unlikely that many use cases would require
a different policy for alteration than creation. On the other hand, just applying the to alterations is undesirable because:CreateTopicPolicy

Its name doesn't convey that it would be applied to alterations too
Its API (specifically its member class) includes topic (i.e.) which is not part of the API for RequestMetadata configs Map<String, String>
topic alteration even though it is part of the API for topic creation.
It prevents any use cases which legitimately did need to apply a different policy for alteration than creation.

Finding a balance between compatibility with existing deployments, and not opening the loophole is difficult.

http://create.topic.policy.class.name
http://create.topic.policy.class.name

The existing config would continue to work, and would continue to name an implementation of create.topic.policy.class.name CreateTopicPol
. That policy would be applied to alterations automatically. The topic's config would be presented to the method (via the icy validate() RequestMetada

) even though it's not actually part of the . The documentation for the interface and config property would be updated.ta AlterTopicsRequest

Network Protocol: and ReplicaStatusRequest ReplicaStatusResponse

A requests information about the progress of a number of replicas.ReplicaStatusRequest

ReplicaStatusRequest => [replica_status_requests]
 replica_status_requests => topic partition_id broker
 topic => STRING
 partition_id => INT32
 broker => INT32

Where

Field Description

topic a topic name

partition_id a partition id of this topic

broker a follower broker id for this partition

The response includes replication information for each of the replicas in the request:

ReplicaStatusResponse => [replica_status]
 replica_status => topic partition_id broker error_code status_time lag
 topic => STRING
 partition_id => INT32
 broker => INT32
 error_code => INT16
 status_time => INT64
 lag => INT64

Where

Field Description

topic the topic name

partition_id the partition id of this topic

broker the follower broker id

error_code an error code

status_time the time the status was current

lag the lag (#messages) of this broker, for this partition

Anticipated errors are:

CLUSTER_AUTHORIZATION_FAILED (31) Authorization failed. ()or the TOPIC?
INVALID_TOPIC_EXCEPTION (17) The topic is not known
INVALID_PARTITIONS (37) The of the given topic is not validpartion_id
UNKNOWN_MEMBER_ID (25) The given id is not known.broker
UNKNOWN_TOPIC_OR_PARTITION (3) The given is not a follower for the partition identified by , .broker topic partition
NONE (0) if the status request completed normally,

Implementation

The will make the underlying to the for the given partition. This saves the need for AdminClient.replicaStatus() ReplicaStatusRequest leader
every broker (because any broker could be the) to have knowledge of the replication status of every replica, which would be --bootstrap-server
inefficient in network IO and/or memory use.

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?
If we are changing behavior how will we phase out the older behavior?
If we need special migration tools, describe them here.
When will we remove the existing behavior?

Existing users of the will receive a deprecation warning when they use the option. The option will be kafka-reassign-partitions.sh --zookeeper
removed in a future version of Kafka. If this KIP is introduced in version 1.0.0 the removal could happen in 2.0.0.

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

One alternative is to do nothing: Let the ReassignPartitionsCommand continue to communicate with ZooKeeper directly.

Another alternative is to do exactly this KIP, but without the deprecation of . That would have a higher long term maintenance burden, and --zookeeper
would prevent any future plans to, for example, provide alternative cluster technologies than ZooKeeper.

	Old KIP-179 - Change ReassignPartitionsCommand to use AdminClient

