
KIP-185: Make exactly once in order delivery per partition
the default producer setting

Status
Motivation
Background

Definitions
Failure modes
Replication and delivery guarantees

Public Interfaces
Proposed Changes

Code changes
Performance considerations

Why change max.in.flight.requests.per.connection from 5 to 2?
Why change retries from 0 to MAX_INT?
Why change acks from 1 to all?

Compatibility, Deprecation, and Migration Plan
Applications may receive the new OutOfOrderSequenceException
Producer performance profile may change

Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
At the moment, the default settings of the Kafka Producer provide at-most once delivery without ordering guarantees per partition. This is the weakest
delivery guarantee Kafka provides. Since Kafka 0.11.0, Kafka's strongest delivery guarantee is exactly once, in order, delivery per partition.
The next release of Kafka is 1.0.0, and it seems like a good time to have Kafka ship with its strongest delivery guarantees as the default.

Background
Let's clarify the terminology we use in the rest of this document to ensure we are all on the same page.

Definitions

Here is how we define the various delivery semantics.

At-most once: Acknowledged messages would appear in the log at most once. In other words some acknowledged messages may be lost.

At-least once: Every acknowledged message appears in the log at least once, ie. there may be duplicates introduced due to internal retries.

Exactly-once: Every acknowledged message appears in the log exactly once, without duplicates.

Failure modes

We distinguish between two kinds of failures:

Transient failures: Any failure from which a host can recover to full functionality after the cause has passed. For instance, power failures, network
interrupts, buggy code, etc.

Hard failures: Failures from which there is no way for a host to recover. For instance, disk failure, data corruption due to a bug, etc.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/pggx1vzfxrx231zvyxy8olr02j6qsh82

1.
2.

The guarantees defined above only apply to transient failures. If data is lost or the log becomes un-readable, acknowledged messages may be lost
regardless of the originally promised semantics.

Concurrent transient failures may also result in the violation of at-least once and exactly-once delivery semantics.

Replication and delivery guarantees

By he definitions above, if a topic is configured to have only a single replica, the best guarantee that Kafka can provide is at-most once delivery, regardless
of the producer settings.

The core reason is that the flush to disk happens asynchronously. So it may happen that there is a power failure --or the kafka process receives a SIGKILL
 after acknowledging the message but before the flush happens. Thus acknowledged messages may be lost even due to a transient failure.--

For the same reason, a concurrent transient failure may also result in acknowledged messages being lost. For instance, for a topic with replication-
factor=3, if all three replicas suffer a simultaneous power outage after acknowledging the message but before flushing the data to disk, we would lose the
acknowledged messages.

Public Interfaces
We would like to change the default values for the following configurations of the Kafka Producer.

config current default value proposed default value

enable.idempotence false true

acks 1 all

max.in.flight.requests.per.connection 5 2

retries 0 MAX_INT

There will be no other publicly visible changes required.

The changes above would guarantee exactly once, in order delivery per partition for topics with , and assuming replication-factor >= 2
that the system doesn't suffer multiple hard failures or concurrent transient failures.

Proposed Changes

Code changes

Currently, the idempotent producer requires max.in.flight.requests.per.connection=1 for correctness reasons. We will need to make client and broker
changes to support max.in.flight.requests.per.connection > 1 with the idempotent producer. The details of the changes required are in .this ticket

We would also need the changes described in these documents:

Kafka Exactly Once - Solving the problem of spurious OutOfOrderSequence errors
Kafka Exactly Once - Dealing with older message formats when idempotence is enabled

Performance considerations

Next we will delineate the reasons for choosing the proposed values for the configurations in question and the performance impact of the same. A
summary of the performance tests we ran to understand the impact of these changes can be found here: An analysis of the impact of max.in.flight.requests.

.per.connection and acks on Producer performance

For the same value of max.in.flight.requests, and acks, we have observed that enabling idempotence alone does not significantly impact performance.
Detailed results supporting this statement are .available here

Why change max.in.flight.requests.per.connection from 5 to 2?
The max.in.flight.requests.per.connection setting was introduced to improve producer throughput by achieving better pipelining: instead of waiting for the
response from the broker before sending the next batch of records, the producer could keep the broker's request queue full by having multiple requests in
flight. This removes the dead time on the broker from when it sends a response to the time it receives the next request. However, the cost is that we could
have out of order writes when there are failures.
With the changes proposed in , we can still have ordering guarantees with .flight > 1 thanks to the sequence numbers introduced in KAFKA-5494 max.in
KIP-98.
Further, the results above show that there is a large improvement in throughput and latency when we go from max.in.flight=1 to max.in.flight=2, but then
there no discernible difference for higher values of this setting. Hence we propose changing the default to 2.

Why change retries from 0 to MAX_INT?

https://issues.apache.org/jira/browse/KAFKA-5494
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Solving+the+problem+of+spurious+OutOfOrderSequence+errors
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Dealing+with+older+message+formats+when+idempotence+is+enabled
https://cwiki-test.apache.org/confluence/display/KAFKA/An+analysis+of+the+impact+of+max.in.flight.requests.per.connection+and+acks+on+Producer+performance
https://cwiki-test.apache.org/confluence/display/KAFKA/An+analysis+of+the+impact+of+max.in.flight.requests.per.connection+and+acks+on+Producer+performance
https://docs.google.com/spreadsheets/d/1dHY6M7qCiX-NFvsgvaE0YoVdNq26uA8608XIh_DUpI4/edit#gid=1276994626
https://issues.apache.org/jira/browse/KAFKA-5494
http://max.in

The retries config was defaulted to 0 to ensure that internal producer retries don't introduce duplicates. With the idempotent producer introduced in KIP-98
, internal producer retries can no longer introduce duplicates. Hence, with the current proposal to - Exactly Once Delivery and Transactional Messaging

enable the idempotent producer by default, we should let the producer retry as much as possible since there is no correctness penalty for doing so.

Why change acks from 1 to all?

With acks=1, we only have an at most once delivery guarantee. In particular, with acks=1, the broker could crash after acknowledging a message but
before replicating it. This results in an acknowledged message being lost. In other words, if we want exactly once delivery, we need acks=all along with
enable.idempotence=true.

The performance analysis above shows that there is an impact to latency when moving from acks=1 to acks=all. This is not entirely surprising: a
ProduceRequest with acks=all is blocked on more RPCs since the followers need to fetch the newly appended data before the request is acknowledged,
and hence we expect a hit to latency. Nonetheless, further analysis is ongoing to figure out the exact impact across different workloads and if there is a
way to improve the situation.

Regardless, we believe strong durability guarantees out of the box are worth the cost of increased latency.

Compatibility, Deprecation, and Migration Plan
This KIP only proposes changes to the default settings of some client configurations. Hence no migration plans are required.

Further, we don't propose to deprecate any configurations at this point.

As for compatibility, it is possible that the change in defaults might cause unexpected changes in behavior for users who upgrade from older versions. We
will call this out the release notes for the 1.0.0 release. Some of the differences are listed below.

Applications may receive the new OutOfOrderSequenceException

This exception indicates that previously acknowledged data was lost. With the new exactly once features we can detect this and report the error to the
user. A properly configured producer and broker should only receive this exception for real data loss.

Producer performance profile may change

The acks=all setting would result worse througput and latency, .as documented here

Rejected Alternatives
This is a proposal to change the default semantics of the Kafka Producer. The specific values of the various variables are either necessary to achieve
stronger semantics, or have been chosen through empirical observation. Hence there are no rejected alternatives at this point.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki.apache.org/confluence/display/KAFKA/An+analysis+of+the+impact+of+max.in.flight.requests.per.connection+and+acks+on+Producer+performance

	KIP-185: Make exactly once in order delivery per partition the default producer setting

