
1.

2.

1.

KIP-189: Improve principal builder interface and add
support for SASL

Status
Motivation
Proposed Changes
Kafka Principal Semantics
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka exposes a interface which can be used to derive custom principals in the context of SSL client authentication. Its current PrincipalBuilder
interface is this:

interface PrincipalBuilder extends Configurable {
 void configure(Map<String, ?> configs);

 Principal buildPrincipal(TransportLayer transportLayer, Authenticator authenticator) throws KafkaException;

 void close() throws KafkaException;
}

At the moment, the derived from the is converted to a before being passed to the . The Principal PrincipalBuilder KafkaPrincipal Authorizer
 object is distinguished primarily by the fact that it has a principal type, which is always set to "User" when converting from a KafkaPrincipal Principal

. The implementation depends on indirectly through the following objects:Authorizer KafkaPrincipal

case class Session(principal: KafkaPrincipal, clientAddress: InetAddress)

case class Acl(principal: KafkaPrincipal, permissionType: PermissionType, host: String, operation: Operation)

In this KIP, we aim to solve two primary problems with the current interface:PrincipalBuilder

The is currently only used for SSL authentication. We want to extend it to SASL mechanisms in general including GSSAPI. PrincipalBuilder
This includes unifying the Kerberos name translation rules.
Due to the conversion from to a custom implementation cannot leverage any enrichment provided Principal KafkaPrincipal, Authorizer
at the authentication layer in a convenient way. For example, if the authorizer had a notion of groups, it might be reasonable to derive a group id
from the client certificate OU field. In that case, the principal builder would have to pack that group id into the principal name to pass it through to
the . This might be reasonable for just one additional field, but it would be more general and much more convenient to pass through Authorizer
the enriched all the way to . (Note this is the problem which was trying to be solved in .)Principal Authorizer KIP-111

Additionally, the interface has a couple shortcomings from an API perspective that we want to address:

There is no use case that we are aware of which requires access to the directly. The closest use case would be the SASL Authenticator
authenticator, but what we actually need is the . Furthermore, there is an odd circular dependence between the SaslServer PrincipalBuilder
 and the : exposes a method which uses the by passing itself as the Authenticator Authenticator principal() PrincipalBuilder
second parameter.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201708.mbox/%3CCAJDuW%3DCb2mObsrJk43kF_iBHKKWoq5TyZpXy63Tc2qYxiKG%2B0Q%40mail.gmail.com%3E
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=67638388

2.

1.

2.

There is no use case that we are aware of which requires the itself. What client SSL authentication actually needs is access to TransportLayer
the which is provided by the JRE. Hence we are unnecessarily exposing Kafka internals.SSLSession

Proposed Changes
To address these problems, we propose first to introduce a new interface to encapsulate the authentication state needed to AuthenticationContext
derive the principal. Initially we expose methods to get the underlying security protocol in use and the client address.

interface AuthenticationContext {
 String securityProtocolName();
 InetAddress clientAddress();
}

There will be two implementations of this interface exposed: and . These expose the SslAuthenticationContext SaslAuthenticationContext
respective state needed to derive the .Principal

class SslAuthenticationContext implements AuthenticationContext {
 public final SSLSession session;
}

class SaslAuthenticationContext implements AuthenticationContext {
 public final SaslServer server;
}

Then we introduce a new builder interface to leverage the . AuthenticationContext

interface KafkaPrincipalBuilder {
 KafkaPrincipal build(AuthenticationContext context);
}

Instead of using the Java-provided object, however, we return . There are two reasons to use the object Principal KafkaPrincipal KafkaPrincipal
instead of . First, it guarantees that it can be passed through to the without conversion which solves the KIP-111 problem. Principal Authorizer
Second, it gives us an extension point for future usage inside Kafka. Let us illustrate with two examples:

With an enriched object, it is a natural extension of the work on secure quotas to allow for quota enforcement at different granularities Principal
(e.g. by group). One way to do this would be to provide a method in which uses itself as the default quotaPrincipal() KafkaPrincipal
implementation. Custom implementations can extend to expose the desired granularity of quota PrincipalBuilder KafkaPrincipal
enforcement.
In the future, we may add support for groups to Kafka. This was brought up in the KIP-111 discussion. To support this, we can provide a groupId

 method in which defaults to a null value or an empty string. Extensions can override this just as before. Also note that it is () KafkaPrincipal
still possible for the implementation to derive its own group information for enforcement.Authorizer

It would also be possible to return and use an check for , but we felt it is cleaner to require the Principal instanceof KafkaPrincipal KafkaPrinci
 directly so that the principal type must be explicitly configured. pal

Kerberos name translation: Kafka exposes a convenience API for translating Kerberos authentication names into "short names." Basically users are
allowed to configure a list of translation rules which are applied during the authentication process in order to derive the principal name. Currently this is
implemented in and is applied by the SASL callback handler when an is received:KerberosShortNamer AuthorizeCallback

 private void handleAuthorizeCallback(AuthorizeCallback ac) {
 String authenticationID = ac.getAuthenticationID();
 ac.setAuthorized(true);
 KerberosName kerberosName = KerberosName.parse(authenticationID);
 String userName = kerberosShortNamer.shortName(kerberosName);
 ac.setAuthorizedID(userName);
 }

Since the is , we propose to move this translation logic into a default implementation AuthorizeCallback not necessarily tied to Kerberos authentication
of . If the authentication context is a , then we check the mechanism and if it is "GSSAPI," KafkaPrincipalBuilder SaslAuthenticationContext
we apply the short name rules. From a high level, the default will look something like this:KafkaPrincipalBuilder

https://docs.oracle.com/javase/8/docs/technotes/guides/security/sasl/sasl-refguide.html

1.
2.

3.

class DefaultPrincipalBuilder {
 KafkaPrincipal build(AuthenticationContext context) {
 if (context instanceof SaslAuthenticationContext) {
 SaslAuthenticationContext saslContext = (SaslAuthenticationContext) context;
 if (saslContext.server.getMechanismName().equals("GSSAPI") {
 // apply kerberos short name rules
 } else {
 // return user principal derived from SaslServer.getAuthorizationID()
 }
 } else if (context instanceof SslAuthenticationContext) {
 // apply old principal builder if one was defined
 // otherwise pass through SSLSession.getPeerPrincipal
 } else {
 // throw some error for unexpected authentication types
 }
 }
}

Finally, we change the default handling of the to simply pass through the authenticationId.AuthorizeCallback

 private void handleAuthorizeCallback(AuthorizeCallback ac) {
 String authenticationID = ac.getAuthenticationID();
 ac.setAuthorized(true);
 ac.setAuthorizedID(authenticationID);
 }

In future work, a similar naming translation mechanism could be added to build principals from a certificate distinguished name.

Kafka Principal Semantics
A principal in Kafka is anything which can be granted permissions. Each principal is identified by a principal type and a name. So what does the
enrichment that we are providing actually represent? For example, are they additional attributes used to identify the principal? If so, then the ACL
command line tool must take these attributes into account when defining ACLs. We take an alternative view. Specifically:

A principal is always identifiable by a principal type and a name. Nothing else should ever be required.
Principal enrichment during authentication is merely a way to represent relations between the authenticated principal and other principals
(possibly of a different type).
An authorizer may or may not take these relations into account when enforcing ACLs. It is valid to ignore them and treat the principal only as a
user.

An example will make this clearer. A user may implement an authorizer which supports group ACLs. The group could be passed through the authentication
layer (say if it derived from a client certificate) in a custom .KafkaPrincipal

class UserPrincipalAndGroup extends KafkaPrincipal {
 private final String userId;
 private final String groupId;

 public UserPrincipalAndGroup(String userId, String groupId) {
 super(KafkaPrincipal.USER_TYPE, userId);
 this.groupId = groupId;
 }

 public KafkaPrincipal group() {
 return new KafkaPrincipal(KafkaPrincipal.GROUP_TYPE, groupId);
 }
}

In this example, there are two principal types: user and group. The represents the user principal and its relation to a specific UserPrincipalAndGroup
group principal. When used in the context of the , the group information is disregarded since this authorizer is not aware of SimpleAclAuthorizer
groups. However, a group-aware authorizer could check ACLs for the corresponding group. The advantage of this approach is that it allows the authorizer
to be agnostic of how the group is derived.

Note that the ACL command line tool is sufficient for this purpose. For example, we might create an ACL for a specific group using a command like this:

$ bin/kafka-acls --authorizer GroupAuthorizer --add --allow-principal Group:test-group --producer --topic Test-
topic

The command line tool is sufficient as long as ACLs only take into account simple principals. Extensions would be needed to create ACLs based on
relations between principals. This is outside the scope of this work.

Compatibility, Deprecation, and Migration Plan
We intend to deprecate and eventually remove the old interface. For now it will continue to be supported in its current usage. We will PrincipalBuilder
not support SASL authentication through the interface.PrincipalBuilder

Both and will be exposed through the configuration.PrincipalBuilder KafkaPrincipalBuilder principal.builder.class
To avoid confusion when using extensions of , we intend to deprecate and eventually remove the static method since it KafkaPrincipal fromString
only supports construction of instances.KafkaPrincipal

Rejected Alternatives
Another option to add support for SASL might be to modify the to use the existing . This allows us to SaslServerAuthenticator PrincipalBuilder
write a custom such as the following:PrincipalBuilder

abstract class SaslPrincipalBuilder() implements PrincipalBuilder {

 Principal buildPrincipal(TransportLayer transportLayer, Authenticator authenticator) throws KafkaException {
 SaslServerAuthenticator saslAuthenticator = (SaslServerAuthenticator) authenticator;
 return buildPrincipal(saslAuthenticator.saslServer());
 }

 abstract Principal buildPrincipal(SaslServer server);
}

This was rejected primarily because it does nothing to clean up the current messy API which leaks internal abstractions PrincipalBuilder
unnecessarily.

We also considered exposing the authentication context through the builder itself:

public abstract class KafkaPrincipalBuilder {
 public KafkaPrincipalBuilder setSaslServer(SaslServer server) {
 this.saslServer = saslServer;
 return this;
 }

 public KafkaPrincipalBuilder setSslSession(SslSession session) {
 this.session = session;
 return this;
 }

 public abstract KafkaPrincipal build();
}

This achieves the same goals and avoids the need for casting of the object. On the other hand, the implementation would AuthenticationContext
have to rely on checks to determine which case should be handled so it's a bit of a wash from that perspective. We preferred the proposed approach null
because we felt the contract was cleaner when all the necessary authentication state was passed directly through the method rather than indirectly build
through the internal state of the builder itself. Admittedly, this is a subjective call.

	KIP-189: Improve principal builder interface and add support for SASL

