
1.

2.

3.

4.

5.

6.

1.

2.
3.
4.

Kafka Exactly Once - Solving the problem of spurious
OutOfOrderSequence errors
Background
In the discussion of , the following point regarding the KIP-185: Make exactly once in order delivery per partition the default producer setting OutOfOrderS

 was raised:equenceException

The indicates that there has been data loss on the broker.. ie. a previously acknowledged message no OutOfOrderSequenceException
longer exists. For most part, this should only occur in rare situations (simultaneous power outages, multiple disk losses, software bugs resulting in
data corruption, etc.).
However, there is another perfectly normal scenario where data is removed: in particular, data could be deleted because it is old and crosses the
retention threshold.
Hence, if a producer remains inactive for longer than a topic's retention period, we could get an which is a false positive: OutOfOrderSequence
the data is removed through valid processes, and this isn't an error.
In the current implementation of the code, we currently raise an when we get a duplicate of a batch which is OutOfOrderSequenceException
not at the tail of the log. This is also confusing, and a more clear error would be the in this case.DuplicateSequenceException

We would like to eliminate the possibility of getting spurious – when you get it, it should always mean data loss and OutOfOrderSequenceExceptions
should be taken very seriously.

Design
Essentially, we want to distinguish between the case where a producer's state is removed from the broker because the retention time has elapsed, and
when the state is lost due to some problem in the system.

One solution is described here:

When the producer metadata is removed from the on the broker due to retention, the next from the ProducerStateManager ProduceRequest
client will arrive with the existing producer id and with a non-zero sequence. Currently this results in an returnOutOfOrderSequenceException
ed by the broker, since the broker can't find any metadata and gets a non-zero sequence. This isn't strictly correct, and we propose introducing a
new and returning this instead. UnknownProducerException
The client can treat the as a non-fatal error and just reinitialize the producer and continue on its merry way UnknownProducerException in

.most cases
However, the above solution opens a hole: if the first write from the producer is actually lost (maybe due to a simultaneous power outage, multiple
disk failures, etc.), we would not detect it. In particular, the first write with sequence = 0 is written, but then the records are lost on the broker. The
next write with sequence=N would get an and with the protocol above would simply be retried. Hence the fact that UknownProducerException
a message was lost would never be raised to the application. This applies to the first write because it is only at the front of the log where there
could be a confusion between removal due to retention or loss due to an unforeseen circumstance.
We can solve the situation in (3), by keeping track of the last ack'd offset on the producer, and also returning the log start offset in each ProduceR

. With these two pieces of information, we can be sure that an is valid if the log start offset returned esponse UknownProducerException
along with the error code is greater than the last ack'd offset. This means that the front of the log has been truncated, causing the producer to
become unknown. In this case, there is no unwanted data loss and the last batch can simply be retried. If we get an UnkownProducerException
 but the log start offset is greater than the last ack'd offset, then the record has been not been lost due to the retention period elapsing, and not
this should be treated as a fatal error.
If we a trying to append a batch with a sequence less than the sequence of the batch at the tail of the log, we should return a DuplicateSequen

 instead of an ceException OutOfOrderSequencException
With the changes above, an would always mean real data loss. An may OutOfOrderSequenceException UnkownProducerException
mean data loss, and the information of the last ack'd offset and log start offset will enable us to disambiguate.

Level of Effort
Client side changes to track the last ack'd offset and correctly interpret an and either retry it or raise it as an UnknownProducerException
error – 1 day.
Broker side changes to raise the – 0.25 days.UnkownProducerException
Updates to the protocol to return the per partition (with KIP) - 2 days.logStartOffset
System tests + Debugging - 2 days

Total : 1.25 weeks.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-185%3A+Make+exactly+once+in+order+delivery+per+partition+the+default+producer+setting

	Kafka Exactly Once - Solving the problem of spurious OutOfOrderSequence errors

