
1.

2.

1.
2.

KIP-192 : Provide cleaner semantics when idempotence is
enabled

Status
Motivation
Background
Public Interfaces

RecordMetadata (in 1.0.0)
TopicMetadataResponse
ProduceResponse (in 1.0.0)
Producer config changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: http://search-hadoop.com/m/Kafka/uyzND1DqvOK1jiI281?
subj=+DISCUSS+KIP+192+Provide+cleaner+semantics+when+idempotence+is+enabled

JIRA: and https://issues.apache.org/jira/browse/KAFKA-5793 https://issues.apache.org/jira/browse/KAFKA-5794

Release Version : Update to the class and are in 1.0.0. The new values for in the RecordMetadata ProduceResponse enable.idempotence Produ
 and the updates to the in has been postponed to a future release.cerConfig TopicMetadata MetadataResponse

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
There are currently two situations where the behavior of the producer with idempotence enabled is less than satisfactory:

Currently the OutOfOrderSequence exception may be raised spuriously, for instance, if the producer state was removed on the server due to
segments which are older than the retention limit being deleted. We would like the OutOfOrderSequence exception to unequivocally indicate data
loss, and hence need to detect and handle these false positives.
There is no graceful way to handle enabling idempotence on the producer, and yet having some topics being on an older (pre 0.11.0) message
format. This means that making idempotence the default is impossible, as the upgrade steps would simply not work. Hence we would like to
introduce a 'safe' mode for idempotence where it will only be enabled if the underlying topic has the requisite message format.

Background
The two problems described above are detailed in the following pages, along with proposed solutions.

Kafka Exactly Once - Solving the problem of spurious OutOfOrderSequence errors
Kafka Exactly Once - Dealing with older message formats when idempotence is enabled

Public Interfaces

RecordMetadata (in 1.0.0)

With the changes in , the broker may return a new Kafka Exactly Once - Solving the problem of spurious OutOfOrderSequence errors DUPLICATE_SEQUEN
 error code in some cases where a duplicate is detected but the metadata for the existing batch isn't cached in memory. When the producer receives CE

this error, it is considered a success, but will not have the offset and timestamp information for the appended records. To help identify this state, we add ha
 and add methods to the .sOffset hasTimestamp RecordMetadata

http://search-hadoop.com/m/Kafka/uyzND1DqvOK1jiI281?subj=+DISCUSS+KIP+192+Provide+cleaner+semantics+when+idempotence+is+enabled
http://search-hadoop.com/m/Kafka/uyzND1DqvOK1jiI281?subj=+DISCUSS+KIP+192+Provide+cleaner+semantics+when+idempotence+is+enabled
https://issues.apache.org/jira/browse/KAFKA-5793?filter=-1
https://issues.apache.org/jira/browse/KAFKA-5794?filter=-1
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Solving+the+problem+of+spurious+OutOfOrderSequence+errors
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Dealing+with+older+message+formats+when+idempotence+is+enabled
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Solving+the+problem+of+spurious+OutOfOrderSequence+errors

package org.apache.clients.producer;

public final class RecordMetadata {

 /**
 * Indicates whether the record metadata includes the offset.
 * @return true if the offset is available, false otherwise.
 */
 public boolean hasOffset();

 /**
 * Indicates whether the record metadata includes the timestamp.
 * @return true if the timestamp is available, false otherwise.
 */
 public boolean hasTimestamp();

}

TopicMetadataResponse

We add a 'MessageFormatVersion' field to the returned in the . This is used to selectively enable idempotence in TopicMetadata MetadataResponse r
 mode when the partition actually supports it. See for a equested Kafka Exactly Once - Dealing with older message formats when idempotence is enabled

description of precisely how this will be used.

We will also add the topic config to the topic metadata response as part of these changes. While this is not required to enable any MaxMessageBytes
superior functionality in the idempotent producer, it would be useful to have this bit of metadata in the producer for future features, and hence we add it
here so that we don't have to change the protocol again for such a minor field.

// TopicMetadataV3

TopicMetadata => TopicErrorCode
 Topic
 IsInternal
 MessageFormatVersion
 MaxMessageBytes
 [PartitionMetadata]
 TopicErrorCode => int16
 Topic => String
 IsInternal => Boolean
 MessageFormatVersion => int8 (NEW)
 MaxMessageBytes => int32 (NEW)
 PartitionMetadata => PartitionMetadataV2

ProduceResponse (in 1.0.0)

We add a field to the produce response to help the producer identify when producer state has been lost due to retention time elapsing. logStartOffset
See for a precise description of how this will be used.Kafka Exactly Once - Solving the problem of spurious OutOfOrderSequence errors

// ProduceResponse v4
ProduceResponse => [TopicName [Partition ErrorCode Offset Timestamp logStartOffset]]
 ThrottleTime
 TopicName => string
 Partition => int32
 ErrorCode => int16
 Offset => int64
 Timestamp => int64
 ThrottleTime => int32
 logStartOffset => int64 (NEW)

Producer config changes

We introduce new values for the configuration: , , enable.idempotence requested required off.

https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Dealing+with+older+message+formats+when+idempotence+is+enabled
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Exactly+Once+-+Solving+the+problem+of+spurious+OutOfOrderSequence+errors

Compatibility, Deprecation, and Migration Plan
For the Produce Request/Response updates, we follow the existing conventions for maintaining backward compatibility. New producers will continue to
talk with old brokers using the old versions of the protocol.

The legacy values for `enable.idempotence` will be interpreted as follows by the new producer: will mean , will mean true required false off.

As part of these changes, we will deprecate the and options for by logging a warning if these are used.true false enable.idempotence

For applications which care about always receiving the offset and timestamp of produced records, there is a greater chance that these will not be available
when idempotence is enabled (for instance a broker bounce would lose some of the cached record metadata, and if an internal producer retry resulted in a
duplicate of a record which is dropped from the cache, the record metadata would not be returned for this record, even though the append is successful).
Such applications should now check the new and methods before using the values RecordMetadata.hasOffset RecordMetadtata.hasTimestamp
returned from the and methods.RecordMetadata.offset RecordMetadata.timestamp

Rejected Alternatives
This KIP contains changes to fix existing problems or clarify existing behavior. As such, there are not too many options for making these improvements
within the existing solutions.

	KIP-192 : Provide cleaner semantics when idempotence is enabled

