
KIP-195: AdminClient.createPartitions

Status
Motivation
Public Interfaces
Proposed Changes

AdminClient: createPartitions()
Network Protocol: CreatePartitionsRequest and CreatePartitionsResponse

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-5856

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Describe the problems you are trying to solve.

As described in and it is desirable to have network protocols and Java AdminClient APIs for administration of a Kafka cluster. One such KIP-4 KIP-117
administrative action is to increase the number of partitions of a topic. This action that can also be performed using kafka-topics.sh --alter --

 This KIP does not propose to change that tool, simply add an equivalent AdminClient API. Note it is not currently topic ... --partitions ...
possible to decrease the number of partitions using the tool, and likewise this KIP only proposes to add an API for partition count increase.

Doing this is enable future work to refactor the / to function via a connection to a broker rather than interacting directly TopicCommand kafka-topics.sh
with ZooKeeper.

Public Interfaces
New network protocol APIs will be added:

CreatePartitionsRequest and CreatePartitionsResponse

The API will have new methods added (plus overloads for options):AdminClient

createPartitions(Map<String, NewPartition> newPartitions)

Proposed Changes

AdminClient: createPartitions()

This API supports the use case of increasing the partition count via kafka-topics.sh --alter --partitions ...

Notes:

This API is synchronous in the sense that the client can assume that the partition count has been changed (or the request was rejected) once
they have obtained the result for the topic from the .CreatePartitionsResult

/**
 * <p>Increase the number of partitions of the topics given as the keys of {@code newPartitions}
 * according to the corresponding values.</p>
 */
public CreatePartitionsResult createPartitions(Map<String, NewPartitions> newPartitions,
 CreatePartitionsOptions options)
public CreatePartitionsResult createPartitions(Map<String, NewPartitions> newPartitions)

Where:

http://mail-archives.apache.org/mod_mbox/kafka-dev/201709.mbox/%3CCAMd5YsyEZZA_9xS22dJ0E66jbkJm%2BhYsU3aUx6JLM%3DPjJRE%2BiQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-5856
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-117%3A+Add+a+public+AdminClient+API+for+Kafka+admin+operations

/** Describes new partitions for a particular topic. */
public class NewPartitions {
 private int newNumPartitions;
 private List<List<Integer>> assignments;
 private NewPartitions(int newNumPartitions) { ... }

 /**
 * Increase the number of partitions to the given {@code newCount}.
 * The assignment of new replicas to brokers will be decided by the broker.</p>
 */
 public static NewPartitions increaseTo(int newCount) { ... }

 /**
 * <p>Increase the number of partitions to the given {@code newCount}
 * assigning the new partitions according to the given {@code newAssignments}.
 * The length of {@code newAssignments} should equal {@code newCount - oldCount}, since
 * the assignment of existing partitions are not changed.
 * Each inner list of {@code newAssignments} should have a length equal to
 * the topic's replication factor.
 * The first broker id in each inner list is the "preferred replica".</p>
 *
 * <p>For example, suppose a topic currently has a replication factor of 2, and
 * has 3 partitions. The number of partitions can be increased to 4
 * (with broker 1 being the preferred replica for the new partition) using a
 * {@code PartitionCount} constructed like this:</p>
 *
 * <pre><code>NewPartitions.increaseTo(4, Arrays.asList(Arrays.asList(1, 2))</code></pre>
 *
 */
 public static NewPartitions increaseTo(int newCount, List<List<Integer>> newAssignments) { ... }
}

public class CreatePartitionsOptions {
 public CreatePartitionsOptions() { ... }
 public Integer timeoutMs() { ... }
 public CreatePartitionsOptions timeoutMs(Integer timeoutMs) { ... }
 public boolean validateOnly() { ... }
 /**
 * Validate the request only: Do not actually change any partition counts.
 */
 public CreatePartitionsOptions validateOnly() { ... }
}

public class CreatePartitionsResult {
 // package access constructor
 Map<String, KafkaFuture<Void>> values() { ... }
 KafkaFuture<Void> all() { ... }
}

Network Protocol: CreatePartitionsRequest and CreatePartitionsResponse

The is used to increase the partition count for a batch of topics, and is the basis for the CreatePartitionsRequest AdminClient.
 method.createPartitions()

The request must be sent to the controller.

The request will require the operation on the resource.ALTER Topic

After validating the request the broker calls which ultimately updates the topic partition assignment znode (AdminUtils.addPartitions() /brokers
)./topics/${topic}

The controller then waits for the change to the number of partitions to be reflected in its metadata cache before sending the CreatePartitionsResponse
.

CreatePartitionsRequest => [topic_partition_count] timeout
 topic_partition_count => topic partition_count
 topic => STRING
 partition_count => count [assignment]
 count => INT32
 assignment => [INT32]
 timeout => INT32

Where

Field Description

topic the name of a topic

count the new partition count

assignment a list of assigned brokers (one list for each new partition)

timeout The maximum time to await a response in ms.

Note: When a is constructed without a array it results in a null array in the NewPartitions newAssignments assignment CreatePartitionsReque
.st

The response provides an error code and message for each of the topics present in the request.

CreatePartitionsResponse => throttle_time_ms [topic_partition_count_error]
 topic_partition_count_error => topic error_code error_message
 topic => STRING
 error_code => INT16
 error_message => NULLABLE_STRING

Where

Field Description

throttle_time_ms duration in milliseconds for which the request was throttled

topic the name of a topic in the request

error_code an error code for that topic

error_message more detailed information about any error for that topic

Anticipated errors:

TOPIC_AUTHORIZATION_FAILED (29) The user lacked Alter on the topic
 INVALID_TOPIC_EXCEPTION (17) If the topic doesn't exist
INVALID_PARTITIONS (37) If the partition was <= the current partition count for the topic.count
INVALID_REPLICA_ASSIGNMENT (39) if the size of any of the lists contained in the list was not equal to the topic replication partitions
factor.
INVALID_REQUEST (42) If duplicate topics appeared in the request, or the size of the list did not equal the number of new partitionspartitions
REASSIGNMENT_IN_PROGRESS (new) If a partition reassignment is in progress. It is necessary to prevent increasing partitions at the same time
so that we can be sure the partition has a meaningful replication factor.
NONE (0) The topic partition count was changed successfully.

Compatibility, Deprecation, and Migration Plan
This is a new API and won't directly affect existing users.

Rejected Alternatives
NewPartitions is inconsistent because it takes a number of partitions, but only assignments for the new partitions. One is absolute and the other is a
difference. The reasons for this are:

NewPartitions could take an increment, rather than the new "absolute" number of partitions. But this makes the request non-idempotent, with
consequent possibilities of a double increment. This would be particularly bad because it's not possible to the partition count.decrease

NewPartitions could take a complete assignment for both old and new partitions. This would incorrectly suggest that the request could
increase the number of partitions and effect a reassignment of the existing partitions at the same time. The server would have to either ignore the
old partitions (in which case why were they required to be provided?) or validate them (in which case the client has to know the old assignment in
order to add more, which is needlessly difficult).

Numerous names were considered: increasePartitions, increatePartitionCount, increaseNumPartitions, addPartitions. It was felt that createPartitions()
successfully implied that only an increase was possible, and was consistent with createTopics. Simiarly numerous names were considered for
NewPartitions. The name of the static factory methods was chosen to alleviate the awkward semantics mentioned above, making it clear that the number
argument was the new total partition count, and not an increment.

Consideration was given to whether to support non-consecutive partition ids. No use cases for non-consecutive partition ids were identified, so this is not
supported.

	KIP-195: AdminClient.createPartitions

