
KIP-207: Offsets returned by ListOffsetsResponse should
be monotonically increasing even during a partition leader
change

Status
Motivation
Proposed Changes
Public Interfaces
Compatibility
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: https://www.mail-archive.com/dev@kafka.apache.org/msg81074.html

JIRA: KAFKA-2334

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
ListOffsetsRequest returns the latest offset for each partition. These offsets should advance monotonically as new messages are added to the
partition. However, sometimes, right after a partition leadership change, the message offsets returned by can actually go backwards.ListOffsetsRequest

Because it happens very rarely, applications that use Kafka are usually not prepared for non-monotonic offset behavior. Applications, such as connectors
for Spark Streaming, may crash or misbehave. To avoid these issues, we should fix this corner case so that offsets advance monotonically even after a
leader election.

Proposed Changes
After a successful partition leadership election, a former follower is now the leader. However, the high water mark on the former follower may be behind
the high water mark on the old, failed leader. This is the cause of the non-monotonic behavior immediately after the election.

What we would like to do is wait until the new leader's high water mark has caught up with the messages already in its log. To implement this, during the
transition from follower to leader, the broker can record the current for the partition. Then, it can refuse to answer for that logEnd ListOffsetsRequest
partition until the high water mark has caught up with this value.

The period when the offset is unavailable should be brief. During this period, the broker should simply return a retriable exception when it is asked for the
offset of the partition. For current versions of ListOffsetsRequest, this exception can be For new versions of LeaderNotAvailableException.
ListOffsetsRequest, we can return a new, more precise exception. The main advantage of creating a new exception is that the client knows it can avoid re-
fetching metadata. A second advantage is that the more precise error message may help with debugging on the client side. During this brief time period,
we will be able to fetch records from the new leader, but not find the latest offset for the partition.

This behavior will apply only when answering requests from clients. Therefore, there will be no impact on or other parts of the ReplicaFetcherThread,
broker that make to other brokers. We can distinguish broker requests from client requests by looking at the field of the ListOffsetsRequests replicaId
RPC. (Hence, other brokers can still use ListOffsetsRequests to figure out which replicas has the longest log for a partition.)

When unclean leader elections are enabled, data loss is possible. So we cannot guarantee that offsets will always go forwards, even in theory, in this
mode. Therefore, when unclean leader elections are enabled on the broker, the KIP-207 behavior will not apply.

Public Interfaces
There will be a new version of API. This will be the same as the existing one, except that we can return a new exception, ListOffsetsResponse OffsetNotAv

, for a partition. This new exception will be a subclass of .ailableException RetriableException

The KIP-207 behavior applies to all , whether they are for the latest offset, the earliest offset, or a time-based offset. Since leader ListOffsetsRequests
changes are rare, the performance impact should be very small. Treating all the same simplifies the code. This also avoids creating ListOffsetsRequests
awkward situations where we can locate the offset for a certain time T, and then cannot locate the offset for that time following a leader change.

Compatibility

https://www.mail-archive.com/dev@kafka.apache.org/msg81074.html
https://issues.apache.org/jira/browse/KAFKA-2334

The new mentioned earlier will be sent only to post-KIP-207 clients. As mentioned earlier, pre-KIP-207 clients will receive OffsetNotAvailableException Lea
. Therefore, older clients should be able to communicate with servers implementing KIP-207. Similarly, because the client derNotAvailableException

changes are limited to handling a single additional exception, post-KIP-207 clients can communicate with pre-KIP-207 brokers.

Rejected Alternatives
Rather than returning a retriable exception, the broker could simply put the into a purgatory structure until the offset was ListOffsetsRequest
available. This avoids the need for the client to poll the server. We would create a new version of the ListOffsetsRequest RPC which adds a maximum
timeout field.

However, adding a new purgatory structure would increase the complexity of the code substantially. Since this case is a corner case which only happens
for a few seconds after a leader election, the extra performance does not seem worth it. It is also awkward to put into a purgatory, ListOffsetsRequest
because each request could ask about multiple partitions. The results for some partitions might be blocked because other partitions were not ready to
return their offsets. Finally, because an RPC revisions is needed, this approach would solve the problem for new clients, but not for older ones. The
approach above avoids these problems: it avoids adding a new purgatory structure, allows us to give back results immediately for the partitions where we
know those results, and solves the problem for older clients as well as newer ones.

	KIP-207: Offsets returned by ListOffsetsResponse should be monotonically increasing even during a partition leader change

