
1.

2.

a.
i.
ii.
iii.
iv.

v.

KIP-210 - Provide for custom error handling when Kafka
Streams fails to produce

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

This KIP is aimed at improving the error-handling semantics in Kafka Streams when Kafka Steams fails to produce a message to the downstream sink by
providing an interface that can provide custom massaging of the error (e.g. report to a custom metrics system) and indicate to Streams whether or not it
should re-throw the Exception, thus causing the application to fall over.

Status
Current state: Adopted (1.1.0)

Discussion thread: Click here

JIRA: KAFKA-6086

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
At MailChimp, we've run into occasional situations where a message that comes into streams just under the size limit on the inbound size (say for the sake
of illustration, 950KB with a 1MB on the Producer) and we change it to a different serialization format for producing to the destination max.request.size
topic. In these cases, it's possible that the serialization format we change to comes in as larger than the inbound message. (For example, if we were going
from a binary format to JSON we might get something much larger on the outbound side.)

These cases are rare, but when they occur they cause our entire application to fall over and someone gets woken up in the middle of the night to figure out
how to deal with it. Further, solutions that address this issue by hacking around it (increasing the max.request.size or trying to manually commit to the
offsets topic to skip the large messages) each have their own problems. It would be preferable for us to be able to optionally provide code to ignore an Api

 returned from the producer. Such an interface would permit us to provide code that will log an error and instruct Streams to not re-throw the Exception
error.

Public Interfaces
We are proposing the addition of:

A public enumeration, , with two possible values: and ProductionExceptionHandlerResponse CONTINUE FAIL
A public interface named with a single method, , that has the following signature:ProductionExceptionHandler handle

ProductionExceptionHandlerResponse handle(ProducerRecord<byte[], byte[]> record, Exception exception)
One default implementation of ProductionExceptionHandler

The , the default implementation that maintains the current behavior of always failing when DefaultProductionExceptionHandler
production exceptions occur.

A new configuration parameter for Streams named that accepts the fully qualified class name of default.production.exception.handler
the to use.ProductionExceptionHandler

Proposed Changes
This implementation will modify the constructor to create a from the aforementioned config value, KafkaStreams ProductionExceptionHandler
defaulting to a default implementation that always re-throws the error (the mentioned above). We'll pipe this DefaultProductionExceptionHandler
processor through the / into .StreamThread StreamTask RecordCollectorImpl

We'll implement the following error handling logic to the :onCompletion handler in RecordCollectorImpl

If the Exception that is thrown is a , behave as we do today and invoke the ProducerFencedException do not ProductionExceptionHandl
 as these exceptions are self-healing.er

If the Exception that is thrown is fatal will affect records and should cause Streams to fail. If so, then invoke the all always do not ProductionEx
 because its result will have to be ignored. We should log that we're ignoring these exceptions at DEBUG level.ceptionHandler

The exceptions that meet this classification are:
AuthenticationException
AuthorizationException
SecurityDisabledException
InvalidTopicException

http://mail-archives.apache.org/mod_mbox/kafka-dev/201710.mbox/%3cCAM5dya-HUqi5TQjMY=VXeTs2O+yQ85VArHUVUie-X3xj_gPN=g@mail.gmail.com%3e
https://issues.apache.org/jira/browse/KAFKA-6086
https://github.com/apache/kafka/blob/6cb649b56b1194f4f1cf080d4596244119c3ce78/streams/src/main/java/org/apache/kafka/streams/processor/internals/RecordCollectorImpl.java#L102

2.

a.

v.
vi.
vii.
viii.
ix.

3.

4.
a.

b.

UnknownServerException
IllegalStateException
OffsetMetadataTooLarge
SerializationException
TimeoutException when it occurs immediately on send due to a full buffer

If the that is thrown meets neither of the above conditions, determine if is already set. If so, invoke the Exception sendException do not Prod
because this would mean that we've already invoked it and decided to . Invoking it again would just result in uctionExceptionHandler FAIL

an ignored result.
If none of the conditions above is met, invoke the method in the and check the result.handle ProductionExceptionHandler

If the result is , log a note at that we received that result and are not failing Streams as a result. This ensures that it's CONTINUE DEBUG
not possible for a client developer to ship code that totally swallows errors without presenting any kind of activity in the log.
If the result is , log a message at that we received that result and set so Streams will fail.FAIL ERROR sendException

The error handler will be invoked for exceptions that are returned via the producer callback, and be invoked for Exceptions thrown directly only will not
from send as all of those exceptions should be seen by Streams immediately.

These changes will facilitate a number of error handling scenarios. For example, one could choose to write an interface that always fails, but does some
additional logging in the process:

class ExtraLoggingProductionExceptionHandler extends ProductionExceptionHandler {
 ProductionExceptionHandlerResponse handle(ProducerRecord <byte[], byte[]> record, Exception exception) {
 val keyString = new String(record.key(), "UTF-8");
 logger.error("Got an error! Key: " + keyString, exception);
 return ProductionExceptionHandlerResponse.FAIL;
 }
}

You could also create a similar interface that just continues processing and logs a warning:

class ExtraLoggingProductionExceptionHandler extends ProductionExceptionHandler {
 ProductionExceptionHandlerResponse handle(ProducerRecord <byte[], byte[]> record, Exception exception) {
 val keyString = new String(record.key(), "UTF-8");
 logger.warn("Got an error! Key: " + keyString, exception);
 return ProductionExceptionHandlerResponse.CONTINUE;
 }
}

Compatibility, Deprecation, and Migration Plan
The default behavior here will be consistent with existing behavior. Changing that behavior will be opt-in by providing the new config setting and an
implementation of the interface. Constructors of , , and will need to change, but as those aren't (to RecordCollectorImpl StreamThread StreamTask
my knowledge) part of the public interface, so that should be fine. We could even provide overloaded constructors with the old signatures if we're
concerned about binary compatibility of this change.

Rejected Alternatives
We also considered:

A very targeted config setting that would ignore record too large errors, but feel that this solution is better because it could also be used to do
granular reporting to other services on any kind of exception that could come from the completion handler.

	KIP-210 - Provide for custom error handling when Kafka Streams fails to produce

