
KIP-211: Revise Expiration Semantics of Consumer Group
Offsets

Status
Motivation
Public Interfaces
Proposed Changes

Transitioning to Empty State
Unsubscribing from a Topic
Standalone (Simple) Consumer
Another Related Change

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

Vote thread: here

JIRA:

Released: 2.1.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The offset of a topic partition within a consumer group expires when the expiration timestamp associated with that partition is reached. This expiration
timestamp is usually affected by the broker config , unless user overrides that default and uses a custom retention. This offsets.retention.minutes
is an overview of how offset expiration works today with respect to different versions of the protocol:OffsetCommit

Version 0: Offsets are stored in ZooKeeper. ZooKeeper based offset storage is not in scope of this KIP.
Version 1: An optional commit timestamp is associated with each topic partition in the request. The broker’s is offsets.retention.minutes
added to the commit timestamp to determine the expiration timestamp of the partition. In this case, clients cannot override the default retention
enforced by the broker.
Version 2, 3: Similar to Version 1 except there is no explicit commit timestamp for each partition.The field in the request retention_time
replaces the value of broker’s offset retention config in calculating the expiration timestamp.

The following table summarizes this:

Version of OffsetCommit Commit Timestamp Offset Retention Expiration Timestamp

0 [ZooKeeper based offset management - out of scope]

1 - no explicit commit timestamp Current timestamp Broker's offsets.retention.minutes Commit Timestamp + Offset Retention

1 - with explicit commit timestamp Partition-specific in the requesttimestamp Broker’s offsets.retention.minutes

2, 3 Current timestamp Request’s retention_time

For versions 1-3, once the expiration timestamp is reached, the offset is removed from the offset cache (during the next cleanup) regardless of the group
state. reports an issue related to this offset expiration, where committed offsets are removed even when there are still active, but rarely KAFKA-4682
committing, consumers in the () group.Stable

In other words, if the corresponding retention period or longer has passed since an active consumer has committed offset for a topic partition, that
committed offset will be removed from the consumer group metadata. If then there is a rebalance or the consumer restarts the last committed offset for that
topic partition will not be found, and the consumer is forced to start from the start or end of the log (depending on the value of configauto.offset.reset
uration) leading to potential duplicate consumption or missing records. This situation can be avoided if the offsets are preserved beyond their expiration
timestamp if the group is still in a state.Stable

 Unable to render Jira issues macro, execution

error.

https://www.mail-archive.com/dev@kafka.apache.org/msg81569.html
https://www.mail-archive.com/dev@kafka.apache.org/msg86478.html
https://issues.apache.org/jira/browse/KAFKA-4682

There are workarounds to this issue and some of them are described in , but they come with their own limitations and drawbacks, as KAFKA-4682
discussed in that JIRA.

Public Interfaces
This is the current protocol:OffsetCommit

OffsetCommit Request (Version: 3) => group_id group_generation_id member_id retention_time [topics]
 group_id => STRING
 group_generation_id => INT32
 member_id => STRING
 retention_time => INT64
 topics => topic [partitions]
 topic => STRING
 partitions => partition offset metadata
 partition => INT32
 offset => INT64
 metadata => NULLABLE_STRING

OffsetCommit Response (Version: 3) => throttle_time_ms [responses]
 throttle_time_ms => INT32
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition error_code
 partition => INT32
 error_code => INT16

The only change made to this protocol is dropping the field from the request. Retention time will be enforced through the broker config retention_time o
 in the new version of the protocol and normally takes effect once the group transitions into state.ffsets.retention.minutes Empty

OffsetCommit Request (Version: 4) => group_id group_generation_id member_id [topics]
 group_id => STRING
 group_generation_id => INT32
 member_id => STRING
 topics => topic [partitions]
 topic => STRING
 partitions => partition offset metadata
 partition => INT32
 offset => INT64
 metadata => NULLABLE_STRING

OffsetCommit Response (Version: 4) => throttle_time_ms [responses]
 throttle_time_ms => INT32
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition error_code
 partition => INT32
 error_code => INT16

Proposed Changes
A more viable solution for can be achieved by changing how group offset expiration works: preserve committed offsets as long as the group KAFKA-4682
is active (has consumers). The expiration timer should start ticking the moment all group members are gone and the group transitions into state. Empty
This expiration semantics implies that there is no longer a need to enforce individual offset retention times and keep individual expiration timestamps for
each topic partition in the group. This is because all committed offsets in the group will expire at the same time.

This proposed change has an impact on the existing offset commit value schema. There is an field in this schema that, as a result of expire_timestamp
expiring all group offsets at the same time, would become redundant (as it would repeat the same value for each offset in the group).

https://issues.apache.org/jira/browse/KAFKA-4682
https://issues.apache.org/jira/browse/KAFKA-4682

1.

2.

Offset Commit Value Schema (Version: 1) =>
 offset => Long
 metadata => String
 commit_timestamp => Long
 expire_timestamp => Long

The proposal is to create a new version of this schema and drop the field:expire_timestamp

Offset Commit Value Schema (Version: 2) =>
 offset => Long
 metadata => String
 commit_timestamp => Long

To make up for the per-offset expiration timestamp we lose in the new version of offset commit value schema, a new field is added in the group metadata
value schema that indicates when the group last changed state.

Group Metadata Value Schema (Version: 1) =>
 protocol_type => String
 generation => Int
 protocol => String
 leader => String
 members => [member]
 ...

Group Metadata Value Schema (Version: 2) =>
 protocol_type => String
 generation => Int
 protocol => String
 leader => String
 current_state_timestamp => Long
 members => [member]
 ...

The rest of this section explains how these suggested changes help in implementing the new group expiration semantics.

Transitioning to Empty State
The expiration time of offsets in a group will be when the group becomes plus retention time of (assuming during Empty offsets.retention.minutes
that time the group does not become active again). Whenever the group transitions to state, resets to the value of Empty current_state_timestamp
current timestamp. Then, during any scheduled offset cleanup task, if "current timestamp" minus is greater than or equal to current_state_timestamp
broker's for any group, all offsets in that group will be removed and the group will transition to state.offsets.retention.minutes Dead

Note that consumers may rejoin the group while the group is in state. As soon as that happens, the group transitions out of state, and that Empty Empty
practically disables offset expiration. This is a breakdown of group states and how the offsets expiration works in those states:

Stable: Group offsets will not expire in this state (group state) Empty
PreparingRebalance: Group offsets will not expire in this state (group state)Empty
CompletingRebalance: Group offsets will not expire in this state (group state)Empty
Empty: The field is set to when group last transitioned to this state. If the group stays in this for current_state_timestamp offsets.

, the following offset cleanup scheduled task will remove all offsets in the group (as explained above).retention.minutes
Dead: Group offsets have expired (group deletion); or the group is unloaded from the coordinator cache (coordinator change). No offset expiration
action required.

The default retention time for group offsets can be customized through the existing broker configuration. If, in the future, offsets.retention.minutes
a need arises for enforcing a per group retention configuration, it can be implemented via a separate KIP.

There are also a couple particular cases that need to be addressed with this new semantics:

If a group consumer unsubscribes from a topic but continues to consume from other subscribed topics, the offset information of that unsubscribed
topic’s partitions should be deleted at the appropriate time.
Standalone (simple) consumer does not use Kafka's group management mechanism, and requires special handling when it comes to offset
expiration.

1.
2.

Unsubscribing from a Topic

If the group state is not , when there is a change in subscribed topics of a group consumer, and, as a result, the group stops consuming from a Empty
topic, the associated offsets for that topic should go through the expiry process – to avoid unnecessary expansion of the offset cache.

Unfortunately, there is no notification mechanism in place for member subscription change within a group. Therefore, a poll mechanism can be
implemented to run at specific intervals and check whether group subscription has deviated from what is stored in the cache. One place to do this is the
repeating offset cleanup scheduled jobs, which by default run every 10 minutes, making them a good choice as the group subscription check will not be
executed very frequently. At every execution of this job we collect a list of all topic partitions the group is consuming from (this can be calculated based on
the data in each group member’s metadata), and cross reference it with the stored offsets for the group. If there are partitions the group has offset for but
no longer consumes from, and has passed since their last commit timestamp, the corresponding offsets will be removed offsets.retention.minutes
from the offset cache.

Note: This feature was not implemented as part of the KIP implementation and was intentionally left out for future implementation.

Standalone (Simple) Consumer

The standalone consumer uses Kafka for offset storage only. For this consumer the group state is always , and the corresponding Empty protocolType
is . Since the above mentioned expiration mechanism will not work for these consumers, the offset of a partition will be expired for them when None offset

 passes since their last commit timestamp.s.retention.minutes

The following table summarize how the new offset expiration semantics would be implemented.

Group State Additional Check in Offset Cleanup Job Action if Check Holds

= Empty

(protocolType !=
None)

current timestamp - current_state_timestamp broker's offsets.retention.
minutes Remove all group offsets

Transition the group to D
ead

 Empty (Non-subscribed partitions = partitions group has offset for - partitions group is consuming
from)

partition non-subscribed partitions:

current timestamp - partition's broker's commit_timestamp offsets.
retention.minutes

Remove offset of partition

= Empty
(protocolType =
None)

current timestamp - partition's commit_timestamp broker's offsets.retention.
minutes

Remove offset of partition

Note that there are different valid values, such as and , and the above semantics applies to them all.protocolType consumer stream

Another Related Change

When group names are automatically generated by the console consumer they are very likely not to be reused. Therefore, it makes sense to skip storing
offsets for them by default to avoid one of the top factors for offset cache size growth. The proposal is to disable auto offset commit by default in this

situation. Implementing this change would become more critical once () KIP-186

lands: it changes the default retention from 1 day to 7 days.

Compatibility, Deprecation, and Migration Plan
The new protocol does not allow clients to customize the retention time of specific offsets in the group. The old consumers, however, could still
commit offsets with a customized retention time. Such old consumers will continue to be supported:

If a consumer uses the old API without customizing the retention time, the new approach will be applied; i.e., the broker’s offsets.
 config will be used as the retention time of its offsets once it becomes Empty. The same retention will be used for retention.minutes

offsets of partitions the group no longer consumes from (or is subscribed to).
If a consumer uses the old API with a customized retention time, the provided retention time will become the retention time of the offsets
in question from the offset commit timestamp (this fully matches the current behavior). In this scenario, version 1 of offset commit value
schema (with the field) will be used.expire_timestamp

This should be rare, but clients who rely on the auto offset commit functionality of the consumer when the group name is auto-generated by
console consumer, will need to manually set the auto offset commit to .true

 Unable to render Jira issues macro, execution

error.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-186%3A+Increase+offsets+retention+default+to+7+days

1.

Rejected Alternatives
Making all group offsets expire at the same time: Even though this is a good solution for when the group becomes , it fails to address the Empty
scenario where the group stops consuming from a particular partition and causes those offsets to remain while the group exists, which leads to
unnecessary expansion of the group metadata cache.

	KIP-211: Revise Expiration Semantics of Consumer Group Offsets

