
KIP-240: AdminClient.listReassignments AdminClient.
describeReassignments

Status
Motivation
Public Interfaces

AdminClient.listReassignments()
Network Protocol: ListReassignmentsRequest
Network Protocol: ListReassignmentsResponse
AdminClient.describeReassignments()
Network Protocol: DescribeReassignmentsRequest
Network Protocol: DescribeReassignmentsResponse

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA: KAFKA-6379

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
This proposal builds on the proposal in , which allows individual partition reassignments to be identified.KIP-236

Currently the AdminClient has no visibility of the partition reassignments occurring in a Kafka cluster. It would be valuable for this information to be
available in the AdminClient because there will eventually be an API for partition reassignment in the AdminClient, and knowing about the current
reassignments is important when creating more.

Public Interfaces

AdminClient.listReassignments()

AdminClient {
 /**
 * List the current reassignments affecting the given {@code partitions}
 * or all current reassignments if the given {@code partitions} is null.
 * This requires describe access to the Cluster.
 */
 ListReassignmentsResult listReassignments(Collection<TopicPartition> partitions);
 ListReassignmentsResult listReassignments(Collection<TopicPartition> partitions,
 ListReassignmentsOptions options);
}

Where:

http://mail-archives.apache.org/mod_mbox/kafka-dev/201712.mbox/%3CCAMd5YszYhb%2BQ6WxxnKh_xDNTJC%3D0YK5HTu9HYzj9z3V7PmSyAQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-6379
https://cwiki.apache.org/confluence/display/KAFKA/KIP-236%3A+Interruptible+Partition+Reassignment

public class ListReassignmentsOptions extends AbstractOptions<ListReassignmentsObjects> {}

/** The result of {@link AdminClient#listReassignments()} */
public class ListReassignmentsResult {
 public KafkaFuture<Collection<Reassignment>> all();
 public KafkaFuture<Reassignment> get(TopicPartition partition);
}

/**
 * Identifies the reassignment of a topic partition to some (new) set
 * of brokers.
 */
class Reassignment {
 // implictly this contains the czxid of the reassignment
 // but this is never exposed to clients
 /** The partition being reassigned */
 public TopicPartition topicPartition() { ... }
 public boolean equals(Object other) { ... } // identity based on czxid
 public int hashCode() { ... } // identity based on czxid
 public String toString() { ... }
}

Network Protocol: ListReassignmentsRequest

A must be sent to the controller of a cluster.ListReassignmentsRequest

ListReassignmentsRequest => timeout_ms [topic_partition]
 timeout_ms => INT32
 topic_partition => topic [partition_id]
 topic => STRING
 partition_id => INT32

Network Protocol: ListReassignmentsResponse

ListReassignmentsResponse => throttle_time_ms, error_code error_message [reassignment]
 throttle_time_ms => INT32
 error_code => INT16
 error_message => NULLABLE_STRING
 reassignment => topic [topic_reassignments]
 topic => STRING
 topic_reassignments => partition reassignment_id
 partition_id => INT32
 reassignment_id => INT64

Where:

throttle_time_ms is the throttle time
error_code is an error code
error_message is an error message
topic is a topic name
partition_id is a partition id
reassignment_id identifies a reassignment znode

Possible errors include:

CLUSTER_AUTHORIZATION_FAILED if the client didn't have describe on the cluster
NOT_CONTROLLER if the request was sent to a broker that was not the controller
UNKNOWN_TOPIC_OR_PARTITION if the partition in the request does not exist

AdminClient.describeReassignments()

AdminClient {
 /**
 * Get the status of the given {@code reassignments}.
 * This requires describe access to the Cluster.
 */
 DescribeReassignmentsResult describeReassignments(
 Collection<Reassignment> reassignments);
 DescribeReassignmentsResult describeReassignments(
 Collection<Reassignment> reassignments, DescribeReassignmentsOptions options);
}

Where is one returned from and the other classes are as follows:Reassignment AdminClient.listReassignments()

public class DescribeReassignmentsOptions extends AbstractOptions<DescribeReassignmentsOptions> { }

/** The result of {@link AdminClient#describeReassignments()} */
public class DescribeReassignmentsResult {
 /**
 * Get (a future for) the description of the given reassignment, or
 * null if the given reassignment was no longer running at time
 * the controller processed the
 * {@link AdminClient#describeReassignments()} call.
 *
 * If the given {@code reassignment} was not given in the call to
 * {@link AdminClient#describeReassignments()} the future will throw
 * NoSuchElementException.
 */
 public KafkaFuture<ReassignmentDescription> get(Reassignment reassignment);

 /**
 * The current reassignments. This is only useful when
 * {@link AdminClient#describeReassignments()} was called with a null
 * {@code reassignments} argument.
 */
 public KafkaFuture<Collection<Reassignment>> reassignments();
}

/** Describes a reassignment */
public class ReassignmentDescription {
 /**
 * The reassignment that this description is describing.
 */
 public Reassignment reassignment() { ... }

 /**
 * The approximate time (as an offset from the unix epoch) that the reassignment
 * was started. This will not change over the life of this reassignment.
 */
 public long startTime() { ... }

 /**
 * The id of the broker that's currently leading the partition
 *
 * It is possible for this value of change over the
 * life of the reassignment if the leader changes.
 */
 public int currentLeader() { ... }

 /**
 * The throttle currently applying to the leader for this partition.
 *
 * It is possible for this value of change over the
 * life of the reassignment if the reassignment is changed, or if the leader changes.
 */
 public long leaderThrottle() { ... }

 // In the future this might also include information about the throttle(s)
 // for the reassignment

 /**
 * The brokers which will maintain a replica after this reassignment
 * is complete. The first broker in the list is the preferred leader.
 * When the preferred broker is in sync it will be elected leader of the partition
 * if the {@code auto.leader.rebalance.enable} broker config is set, or
 * when electPreferredLeader() is invoked.
 *
 * It is possible for this list of change over the
 * life of the reassignment if the reassignment is changed.
 */
 public List<Integer> newAssignedBrokers() { ... }

 /**
 * A map from newly assigned brokers to the corresponding throttle for that broker.
 * The keyset of this map is precisely {@link #newAssignedBrokers()}. If
 * a broker is not throttled, its throttle will be {@link Long#MAX_VALUE}.
 *
 * It is possible for this map of change over the
 * life of the reassignment if the reassignment is changed.
 */
 public Map<Integer, Long> newAssignedThrottles() { ... }
 }

Having obtained a a client can determine the LEO of the replicas on each of the newly assigned brokers by calling ReassignmentDescription AdminC
. It is not possible to include this in the itself, this this information is not available to the lient.describeLogDirs() ReassignmentDescription

controller.

The start time is provided to determine how long the reassignment has been in progress.

Network Protocol: DescribeReassignmentsRequest

A must be sent to the controller of a cluster.DescribeReassignmentsRequest

DescribeReassignmentsRequest => [topic_reassignment] timout_ms
 topic_reassignment => topic reassignment
 topic => STRING
 reassignment => partition_id reassigment_id
 partition_id => INT32
 reassignment_id => INT64
 timeout_ms => INT32

Network Protocol: DescribeReassignmentsResponse

DescribeReassignmentsResponse => throttle_time_ms error_code error_message [description]
 throttle_time_ms => INT32
 error_code => INT16
 error_message => NULLABLE_STRING
 description => reassignment_id start_time leader_id leader_throttle [new_assigned]
 start_time => INT64
 leader_id => INT32
 leader_throttle => INT64
 new_assigned => broker_id follower_throttle
 broker_id => INT32
 follower_throttle => INT64

Where:

throttle_time_ms is the throttle time
error_code is an error code
error_message is an error message
reassignment_id identifies the reassignment znode, obtained from a previous .ListReassignmentsRequest
start_time is the time the reassignment started
leader_id is the id of the broker that is currently leader of the partition
leader_throttle is the throttle currently applying to the leader
broker_id is the id of a broker in the new assignment
follower_throttle is the throttle currently applying to the corresponding broker_id

1.

1.

a.

b.
i.
ii.

1.

2.

Possible errors include:

CLUSTER_AUTHORIZATION_FAILED if the client didn't have describe on the cluster
NOT_CONTROLLER if the request was sent to a broker that was not the controller

Notes:

If a provided in the DescribeReassignmentRequest does not match the current reassignment then that partition will be reassignment_id
omitted from the DescribeReassignmentsResponse, rather than being an error.

Proposed Changes
Assuming the work proposed in KIP-236, the controller-side implementation when handling a is as follows:ListPartitionsRequest

The controller queries zookeeper to obtain the information about the reassignment for the given partitions from /admin/reassginments
, obtaining the data (which contains the current new assigned partitions), and the zookeeper , which includes the /$topic/$partition Stat cz

. We use the as the .xid czxid reassignment_id

The controller-side implementation when handling a is as follows:DescribePartitionsRequest

The controller queries zookeeper to obtain the information about the reassignment for the given partitions from /admin/reassginments
, obtaining the data (which contains the current new assigned partitions), and the zookeeper , which includes the /$topic/$partition Stat cz

 and . xid ctime
If the znode does not exist, or the of the znode does not match the in the request the client has a reference czxid reassignment_id
to a now-completed reassignment and not information about this reassignment is returned.
Otherwise:

We obtain throttle information from ZooKeeper topic and broker config
We use the as the ctime start_time.

Compatibility, Deprecation, and Migration Plan
This is a new API, so has no impact on existing users.

Rejected Alternatives
Another method on the AdminClient also makes sense: Getting the current `ReassignmentDescription`s for a given `Collection<TopicPartition>`
(rather than for a given `Collection<Reassignment>` as proposed here) The subtly with such a method is that it obscures the distinction between
two successive reassignments: When invoked successively with the same arguments it might look like the same reassignment was in progress,
but in fact the results could be referring to two separate reassignments. The proposed API makes this distinction more clear, but requires
obtaining a Reassignment before getting its description. Implementing this KIP does not preclude implementing such a method in the future.
If we don't want to directly expose ZooKeeper's czxid information in the responses we could change the format of the request data stored in
zookeeper to include a UUID allocated on the controller when it first creates the znode. The drawback of this is the overhead of transfering this
UUID to/from ZK and the storage overhead in ZK.

	KIP-240: AdminClient.listReassignments AdminClient.describeReassignments

