KIP-240: AdminClient.listReassignments AdminClient.
describeReassignments

® Status
® Motivation
® Public Interfaces
© AdminClient.listReassignments()
Network Protocol: ListReassignmentsRequest
Network Protocol: ListReassignmentsResponse
AdminClient.describeReassignments()
Network Protocol: DescribeReassignmentsRequest
© Network Protocol: DescribeReassignmentsResponse
® Proposed Changes
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

[e]
[e]
[e]
[e]

Status

Current state: Under Discussion
Discussion thread: here
JIRA: KAFKA-6379

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

This proposal builds on the proposal in KIP-236, which allows individual partition reassignments to be identified.

Currently the AdminClient has no visibility of the partition reassignments occurring in a Kafka cluster. It would be valuable for this information to be
available in the AdminClient because there will eventually be an API for partition reassignment in the AdminClient, and knowing about the current
reassignments is important when creating more.

Public Interfaces

AdminClient.listReassignments()

Adm nCient {
/**
* List the current reassignnents affecting the given {@ode partitions}
* or all current reassignnents if the given {@ode partitions} is null.
* This requires describe access to the Custer.
*
/
Li st Reassi gnnent sResult 1i st Reassi gnnents(Col | ecti on<TopicPartition> partitions);
Li st Reassi gnment sResult |i st Reassi gnnent s(Col | ecti on<TopicPartition> partitions,
Li st Reassi gnnent sOpti ons options);

Where:

http://mail-archives.apache.org/mod_mbox/kafka-dev/201712.mbox/%3CCAMd5YszYhb%2BQ6WxxnKh_xDNTJC%3D0YK5HTu9HYzj9z3V7PmSyAQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-6379
https://cwiki.apache.org/confluence/display/KAFKA/KIP-236%3A+Interruptible+Partition+Reassignment

public class ListReassi gnnentsOptions extends Abstract Opti ons<Li st Reassi gnnment sCbj ect s> {}

/** The result of {@ink Adm nClient#listReassignnents()} */
public class ListReassignmentsResult {
publ i ¢ Kaf kaFut ure<Col | ecti on<Reassi gnment >> al | ();
publ i ¢ Kaf kaFut ur e<Reassi gnnment > get (Topi cPartition partition);

}

/**
* ldentifies the reassignnent of a topic partition to some (new) set
* of brokers.
*/
cl ass Reassi gnnent {
/1 inmplictly this contains the czxid of the reassignment
/1 but this is never exposed to clients
/** The partition being reassigned */

public TopicPartition topicPartition() { ... }

public bool ean equal s(Object other) { ... } /1 identity based on czxid
public int hashCode() { ... } // identity based on czxid

public String toString() { ... }

Network Protocol: ListReassignmentsRequest

A Li st Reassi gnnment sRequest must be sent to the controller of a cluster.

Li st Reassi gnment sRequest => timeout_ns [topic_partition]
timeout _nms => | NT32
topic_partition => topic [partition_id]
topi c => STRI NG
partition_id => | NT32

Network Protocol: ListReassignmentsResponse

Li st Reassi gnnent sResponse => throttle_time_ns, error_code error_nessage [reassignnment]
throttle_time_ns => | NT32
error_code => | NT16
error_nessage => NULLABLE_STRI NG
reassi gnnent => topic [topic_reassignnments]
topi c => STRI NG
topi c_reassignnents => partition reassignment_id
partition_id => | NT32
reassignnent _id => | NT64

Where:

throttle_tine_ns is the throttle time
error_code is an error code

error_nessage is an error message

t opi c is a topic name

partition_idisa partition id

reassi gnment _i d identifies a reassignment znode

Possible errors include:
® CLUSTER _AUTHORI ZATI ON_FAI LEDIf the client didn't have describe on the cluster

®* NOT_CONTROLLERIf the request was sent to a broker that was not the controller
®* UNKNOWN_TOPI C_OR_PARTI TI ONif the partition in the request does not exist

AdminClient.describeReassignments()

Adnmi nClient {
/**
* Get the status of the given {@ode reassignnents}.
* This requires describe access to the Custer.
*/
Descri beReassi gnment sResul t descri beReassi gnnent s(
Col | ecti on<Reassi gnnment > reassi gnnents) ;
Descri beReassi gnment sResul t descri beReassi gnnent s(
Col | ecti on<Reassi gnnment > reassi gnments, Descri beReassi gnnent sOpti ons options);

Where Reassi gnnment is one returned from Adnmi nCl i ent. | i st Reassi gnnent s() and the other classes are as follows:

public class DescribeReassi gnment sOpti ons extends Abstract Opti ons<Descri beReassi gnmentsOptions> { }

/** The result of {@ink Adm nClient#describeReassignments()} */
public class DescribeReassi gnnentsResult {
/**
* CGet (a future for) the description of the given reassignnment, or
* null if the given reassignment was no |onger running at tinme
* the controller processed the
* {@ink Adm nClient#descri beReassi gnments()} call.

* If the given {@ode reassignment} was not given in the call to

* {@ink Adm nClient#describeReassi gnments()} the future will throw

* NoSuchEl enent Excepti on.

*/

publ i ¢ Kaf kaFut ur e<Reassi gnnent Descri pti on> get (Reassi gnment reassi gnnent) ;

/**

* The current reassignments. This is only useful when

* {@ink Adm ndient#describeReassi gnnents()} was called with a null
* {@ode reassi gnments} argument.

*/

publ i ¢ Kaf kaFut ur e<Col | ecti on<Reassi gnnment >> reassi gnment s() ;

/** Describes a reassignnent */
public class ReassignnmentDescription {
/**
* The reassignment that this description is describing.
*/
public Reassignnent reassignnent() { ... }

/**

* The approximate tine (as an offset fromthe unix epoch) that the reassignnent
* was started. This will not change over the life of this reassignnent.

*/

public long startTinme() { ... }

/**

* The id of the broker that's currently |leading the partition
*

* It is possible for this value of change over the

* |ife of the reassignment if the |eader changes.

*/

public int currentLeader() { ... }

/**

* The throttle currently applying to the leader for this partition.

*

* It is possible for this value of change over the

* |ife of the reassignment if the reassignnment is changed, or if the | eader changes.
*/

public long | eaderThrottle() { ... }

/1 1In the future this might also include information about the throttle(s)
/1 for the reassignnment

| **

* The brokers which will naintain a replica after this reassignnent

* is conplete. The first broker in the list is the preferred | eader.

* \Wen the preferred broker is in sync it will be elected | eader of the partition
* if the {@ode auto.leader.rebal ance. enabl e} broker config is set, or

* when el ect PreferredLeader() is invoked.

*

* It is possible for this |list of change over the

* life of the reassignnent if the reassignnment is changed.

*/

public List<lnteger> newAssignedBrokers() { ... }

| **

* A map fromnewy assigned brokers to the corresponding throttle for that broker.
* The keyset of this map is precisely {@ink #newAssi gnedBrokers()}. If

* a broker is not throttled, its throttle will be {@ink Long#MAX_VALUE}.

*

* It is possible for this map of change over the

* |ife of the reassignment if the reassignnment is changed.

*/

public Map<lnteger, Long> newAssignedThrottles() { ... }

Having obtained a Reassi gnnent Descri pti on a client can determine the LEO of the replicas on each of the newly assigned brokers by calling Admi nC
i ent.describelLogDirs().Itisnotpossible to include this in the Reassi gnment Descr i pti on itself, this this information is not available to the
controller.

The start time is provided to determine how long the reassignment has been in progress.

Network Protocol: DescribeReassignmentsRequest

A Descri beReassi gnnent sRequest must be sent to the controller of a cluster.

Descri beReassi gnment sRequest => [topic_reassignnment] tinout_nmns
t opi c_reassi gnnent => topic reassi gnnent
topi c => STRI NG
reassignment => partition_id reassignent_id
partition_id => I NT32
reassignment _id => | NT64
timeout _ns => | NT32

Network Protocol: DescribeReassignmentsResponse

Descri beReassi gnnent sResponse => throttle_time_ns error_code error_nessage [description]
throttle_time_ns => | NT32
error_code => | NT16
error_nessage => NULLABLE_STRI NG
description => reassignment_id start_time |eader_id | eader_throttle [new_ assigned]
start_time => | NT64
| eader _id => | NT32
| eader _throttle => | NT64
new_assi gned => broker_id follower_throttle
broker _id => | NT32
follower_throttle => | NT64

Where:

throttle_tine_ns is the throttle time

error_code is an error code

error_nessage is an error message

reassi gnnent _i d identifies the reassignment znode, obtained from a previous Li st Reassi gnnment sRequest .
start _ti me is the time the reassignment started

| eader _i d is the id of the broker that is currently leader of the partition

| eader _t hrot t | e is the throttle currently applying to the leader

br oker _i d is the id of a broker in the new assignment

foll oner_t hrottl e is the throttle currently applying to the corresponding br oker _i d

Possible errors include:

® CLUSTER_AUTHORI ZATI ON_FAI LEDIf the client didn't have describe on the cluster
®* NOT_CONTROLLERIf the request was sent to a broker that was not the controller

Notes:

® [fareassignment _i d provided in the DescribeReassignmentRequest does not match the current reassignment then that partition will be
omitted from the DescribeReassignmentsResponse, rather than being an error.

Proposed Changes

Assuming the work proposed in KIP-236, the controller-side implementation when handling a Li st Parti ti onsRequest is as follows:

1. The controller queries zookeeper to obtain the information about the reassignment for the given partitions from / adni n/ r eassgi nnent s
/ $t opi ¢/ $parti ti on, obtaining the data (which contains the current new assigned partitions), and the zookeeper St at , which includes the cz
xi d. We use the czxi d as the r eassi gnnent _i d.

The controller-side implementation when handling a Descri beParti ti onsRequest is as follows:

1. The controller queries zookeeper to obtain the information about the reassignment for the given partitions from / adni n/ r eassgi nnent s
/ $t opi ¢/ $parti ti on, obtaining the data (which contains the current new assigned partitions), and the zookeeper St at , which includes the cz
xidandctine.
a. If the znode does not exist, or the czxi d of the znode does not match the r eassi gnnment _i d in the request the client has a reference
to a now-completed reassignment and not information about this reassignment is returned.
b. Otherwise:
i. We obtain throttle information from ZooKeeper topic and broker config
ii. Weusethectinmeasthestart_tine.

Compatibility, Deprecation, and Migration Plan

This is a new API, so has no impact on existing users.

Rejected Alternatives

1. Another method on the AdminClient also makes sense: Getting the current "ReassignmentDescription’s for a given “Collection<TopicPartition>"
(rather than for a given “Collection<Reassignment>" as proposed here) The subtly with such a method is that it obscures the distinction between
two successive reassignments: When invoked successively with the same arguments it might look like the same reassignment was in progress,
but in fact the results could be referring to two separate reassignments. The proposed APl makes this distinction more clear, but requires
obtaining a Reassignment before getting its description. Implementing this KIP does not preclude implementing such a method in the future.

2. If we don't want to directly expose ZooKeeper's czxid information in the responses we could change the format of the request data stored in
zookeeper to include a UUID allocated on the controller when it first creates the znode. The drawback of this is the overhead of transfering this
UUID to/from ZK and the storage overhead in ZK.

	KIP-240: AdminClient.listReassignments AdminClient.describeReassignments

