KIP-244: Add Record Header support to Kafka Streams
Processor API

Status
Motivation
Public Interfaces
Proposed Changes
© Headers Inheritance
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
® Future Work

Status

Current state: Adopted in release 2.0
Discussion thread: here

JIRA:

key summary type created updated due assignee reporter priority status resolution

e‘i\. JQL and issue key arguments for this macro require at least one Jira application link to be configured

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Headers have been introduced in almost all Kafka components (broker, producer API, consumer API, connect API). This KIP is aimed to add Record
Headers support as part of Streams Processor API first, to then discuss about how to approach its support on the DSL API level.

Headers can be used on different scenarios (e.g. propagating Tracing context between different components, operational information that can be used for
filtering, etc.).

Headers must be propagated downstream to make them available on Sinks, and available on Processors to be able to manipulate them (e.g. in the cases
of Distributed Tracing, it will be used to create Spans and injecting context for following Nodes), using Headers API.

Public Interfaces

Add headers as part of processing:

or g. apache. kaf ka. streans. processor. Processor Cont ext :

* Headers headers();

or g. apache. kaf ka. streans. processor. MockProcessor Cont ext :

* set RecordMetadata(final String topic, final int partition, final long offset, final Headers headers,
final long tinmestanp)

* voi d setHeaders(final Headers headers)

* Headers headers();

or g. apache. kaf ka. streans. t est. Consuner Recor dFact ory:


http://mail-archives.apache.org/mod_mbox/kafka-dev/201712.mbox/browser

* Consuner Record<byte[], byte[]> create(final String topicName, final K key, final V value, final Headers
headers, final |ong tinestanpMs)

* Consuner Record<byte[], byte[]> create(final String topicNanme, final K key, final V value, final Headers
headers)

* Consuner Record<byte[], byte[]> create(final String topicName, final V value, final Headers headers, final
I ong tinestanpMs)

* Consuner Record<byte[], byte[]> create(final String topicName, final V value, final Headers headers)

* Consuner Record<byte[], byte[]> create(final K key, final V value, final Headers headers, final |ong
ti mest anpMs)

* Consuner Record<byte[], byte[]> create(final K key, final V value, final Headers headers)
* Consuner Record<byte[], byte[]> create(final V value, final Headers headers, final long timestanmpMs)

* Consuner Record<byte[], byte[]> create(final V value, final Headers headers)

org. apache. kaf ka. streans. t est. Qut put Verifier

* voi d conpareVal ueHeader s(final ProducerRecord<K, V> record, final V expectedValue, final Headers
expect edHeader s)

* voi d conpareVal ueHeader s(final ProducerRecord<K, V> record, final ProducerRecord<K, V> expectedRecord)

* voi d conpar eKeyVal ueHeader s(final ProducerRecord<K, V> record, final K expectedKey K, final V expectedVal ue,
final Headers expect edHeaders)

* voi d conpar eKeyVal ueHeader s(final ProducerRecord<K, V> record, final ProducerRecord<K, V> expectedRecord)

* voi d conpar eKeyVal ueHeader sTi mest anp(fi nal ProducerRecord<K, V> record, final K expectedKey K, final V
expectedVal ue, final Headers expectedHeaders, final |ong expectedTi nestanp)

* voi d conpar eKeyVal ueHeader sTi mest anp(fi nal ProducerRecord<K, V> record, final ProducerRecord<K, V>
expect edRecor d)

Proposed Changes

Adding “headers()" to "ProcessorContext™ will enable custom processors and future DSL processors to have Headers available.

Internally, some components need to have headers available on the ProcessorContext, like:

* o0.a.k.s.p.i.AbstractProcessor Cont ext
* o0.a.k.s.p.i.d obal StateUpdat eTask

* 0.a.k.s.p.i.ProcessorRecor dCont ext

* o0.a.k.s.p.i.RecordCollector

* o0.a.k.s.p.i.RecordCol | ectorl npl

* 0.a.k.s.p.i.RecordContext

* o0.a.k.s.p.i.RecordDeserialized

* 0.a.k.s.p.i.SinkNode

* o0.a.k.s.p.i.StanpedRecord

* o0.a.k.s.p.i.LRUCacheEntry

More details on PR: https://github.com/apache/kafka/pull/4955

In the case of stateful applications, consider that headers are not stored in state-stores; therefore only the headers from the current record in process is
available.

Headers Inheritance


https://github.com/apache/kafka/pull/4955

1. To make the inheritance implementation of headers consistent with what we had with other record context fields. I.e. pass through the record context in
“context.forward()". Note that within a processor node, users can already manipulate the Headers with the given APIs, so at the time of forwarding, the
library can just copy what-ever is left / updated to the next processor node.

2. In the sink node, where a record is being sent to the Kafka topic, we should consider the following:

a. For sink topics, we will set the headers into the producer record.

b. For repartition topics, we will the headers into the producer record.
c. For changelog topics, we will drop the headers in the produce record since they will not be used in restoration and not stored in the state store either.

Compatibility, Deprecation, and Migration Plan

® Clients using High-Level DSL and Processor API should not be affected with changes proposed.
® As Headers are propagated downstream, Clients that have Sources with Records that have Headers, will end up with Headers on Sink Topics.

Rejected Alternatives

2. Adding Headers to DSL API.

Future Work

® Adding DSL Processors to use Headers to filter/map/branch. Potentially supported by KIP-159.


https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-159%3A+Introducing+Rich+functions+to+Streams

	KIP-244: Add Record Header support to Kafka Streams Processor API

