
KIP-248 - Create New ConfigCommand That Uses The New
AdminClient

Status
Motivation
Public Interfaces

Command Line Tools And Arguments
Protocol Changes

Wire Format Types
Field Types

Double
Alter Quotas
AlterConfigs

AdminClient APIs
Request API
New Command Line Interface
Help Message
Output Format

Compatibility, Deprecation, And Migration Plan
Compatibility
Impact
Deprecation
Special Migration Tools
Removal Of The Existing Behavior

Test Plan
Future Considerations

This page is meant as a template for writing a . To create a KIP choose Tools->Copy on this page and modify with your content and replace the KIP
heading with the next KIP number and a description of your issue. Replace anything in italics with your own description.

Status
Current state: Rejected [One of "Under Discussion", "Accepted", "Rejected"]

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Describe the problems you are trying to solve.

KIP-4 defines the high level motivation for using the admin client and with its subtasks acts as the umbrella JIRA for this KIP.KAFKA-3268
The current implementation of the () which is used by connects ConfigCommand kafka.admin.ConfigCommand kafka-configs.sh
to Zookeeper directly. This prevents the tool from being used in deployments where only the brokers are exposed to clients (i.e. where the
zookeeper servers are intentionally not exposed).
There is a general push to refactor/rewrite/replace tools which need Zookeeper access with equivalents which use the API. Thus it AdminClient
is necessary to change the so that it no longer talks to Zookeeper directly, but via an intermediating broker.ConfigCommand
Makes the ConfigCommand transparent to the authorization mechanism therefore enables higher level of security. The broker will be able to
authorize config admin requests.
The API currently lacks any functionality for changing broker, user and client configurations which is possible with the current AdminClient
Zookeeper based implementation.ConfigCommand
Changing the ConfigCommand will increase the user experience for for the above mentioned reasons.KIP-226

Public Interfaces

Command Line Tools And Arguments

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/6c0b347a52b51f618d7b86b44d0dce65a6079764358fef619d4807c9@%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://issues.apache.org/jira/browse/KAFKA-3268
https://cwiki.apache.org/confluence/display/KAFKA/KIP-226+-+Dynamic+Broker+Configuration

The options accepted by command will change:kafka-configs.sh

--zookeeper will be removed, it's functionality won't be available. The design decision behind is that the ConfigCommand tool will be rewritten
in the tools module which doesn't depend on the core module. This makes it hard to provide backward compatibility with the current
ConfigCommand.

--bootstrap-server was added in and will be used here.

--adminclient.config option will be added and should be used similarly to other tools, such as --producer.config in the console-producer.
This parses a config file and initializes the admin client used internally.
--adminclient-property option will be added. It is a key=value list that will be parsed by the command. It initializes the internal admin client.

A new tool, called scram-credentials.sh will be added. The need for this broker is when people use zookeeper as a credentials store for SCRAM (and
currently users have no other option), then direct interaction with zookeeper is required to set up the initial credentials with inter-broker communication.
The functionality of the tool will cover the following:

Add, remove and list SCRAM credentials directly with zookeeper
Will continue to use the option to specify the zookeeper host--zookeeper
Works similarly to the old config command. Examples:

Add new credentials:
bin/scram-credentials.sh --zookeeper localhost:2181 --add 'SCRAM-SHA-256=[iterations=8192,
password=alice-secret],SCRAM-SHA-512=[password=alice-secret]' --username alice
Describe credentials:
bin/ --zookeeper localhost:2181 --describe --username alicescram-credentials.sh
Remove credentials:
bin/ --zookeeper localhost:2181 --delete 'SCRAM-SHA-512' --username alicescram-credentials.sh

Protocol Changes

KIP-133 introduced the describe and alter admin protocols and a wire format representation for ResourceType. We will modify these to KIP-140
accommodate the new requirements.

Wire Format Types

ResourceType

0: Unknown

1: Any

2: Topic

3: Group

4: Broker

5: User (new)

6: Client (new)

QuotaType (new)

0: ProducerByteRate
1: ConsumerByteRate
2: RequestPercentage

QuotaSource (new)

0: ClientInUser
1: DefaultClientInUser
2: User
3: ClientInDefaultUser
4: DefaultClientInDefaultUser
5: DefaultUser
6: Client
7: DefaultClient

Field Types

Double

 Unable to render Jira issues macro, execution

error.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-133%3A+Describe+and+Alter+Configs+Admin+APIs
https://cwiki.apache.org/confluence/display/KAFKA/KIP-140%3A+Add+administrative+RPCs+for+adding%2C+deleting%2C+and+listing+ACLs

1.
2.
3.
4.

1.
2.

A new type needs to be added to transfer quota values. Since the protocol classes in Kafka already uses ByteBuffers it is logical to use their functionality
for serializing doubles. The serialization is basically a representation of the specified floating-point value according to the IEEE 754 floating-point
"double format" bit layout. The ByteBuffer serializer writes eight bytes containing the given double value, in Big Endian byte order, into this buffer at the
current position, and then increments the position by eight.

The implementation will be defined in with the other protocol types and it will have no default value org.apache.kafka.common.protocol.types
much like the other types available in the protocol.

Describe Quotas

The justification for a new protocol is that a quota is quite different from a broker or topic config because a quota can sometimes be identified a simple
user, client or even a (user,client) tuple while a topic or a broker config can be identified only by the topic's name or the broker's ID. Moreover quotas have
their own well defined types.

DescribeQuotas Request

DescribeQuotas Request (Version: 0) => [resource]
 resource => [quota_resource] [quota_type]
 quota_resource => type name
 type => INT8
 name => STRING
 quota_type => INT8

Request semantics:

Can be sent to any broker
If the is it means that listing the default quota is asked. Responses will be returned the same way for defaults.name empty
If the array is empty, all quotas are returned. Otherwise, quotas with the provided types are returned.quota_type
Authorization: "DescribeQuotas" can only be interpreted on the "Cluster" resource and represented by the DescribeConfigs ACL due to the
similarity in use cases. Unauthorized requests will receive an appropriate AuthorizationFailed error code.

DescribeQuotas Response

DescribeQuotas Response (Version: 0) => throttle_time_ms [resource]
 throttle_time_ms => INT32
 resource => [quota_resource] [quota]
 quota_resource => type name
 type => INT8
 name => STRING
 quota_collection => error_code error_message [quota_entry]
 error_code => INT16
 error_message => NULLABLE_STRING
 quota_entry => quota_type quota_value quota_source
 quota_type => INT8
 quota_value => DOUBLE
 quota_source => INT8

Alter Quotas

AlterQuotas Request

AlterQuota Request (Version: 0) => validate_only [resource]
 validate_only => BOOLEAN
 resource => [quota_resource] [quota]
 quota_resource => type name
 type => INT8
 name => STRING
 quota => quota_type quota_value
 quota_type => INT8
 quota_value => DOUBLE

Request Semantics

Can be sent to any broker

2.
3.

4.

5.

6.

1.
2.
3.
4.

If is empty it means that altering a default quota is asked.name
Authorization: "AlterQuotas" can only be interpreted on the "Cluster" resource and represented by the AlterConfigs ACL due to the similarity in
use cases. Unauthorized requests will receive an appropriate AuthorizationFailed error code.
For tools that allow users to alter quota configs, a validation/dry-run mode where validation errors are reported but no creation is attempted is
available via the parameter.validate_only
The AlterQuotas protocol has an incremental semantics. By this we mean that the request will update only those quotas which are sent in the
request.
Removing quotas will be done by sending a NaN as the value.

AlterQuotas Response

AlterQuotas Response (Version: 0) => throttle_time_ms [resource]
 throttle_time_ms => INT32
 resource => [quota_resource] [quota]
 quota_resource => type name
 type => INT8
 name => STRING
 quota => error_code error_message quota_type
 error_code => INT16
 error_message => NULLABLE_STRING
 quota_type => INT8

AlterConfigs

This request needs some change as currently the --add-config operation of ConfigCommand would do incremental operations in Zookeeper but the
AlterConfigs protocol sets the whole properties object. The purpose of this change to add an boolean parameter to the request so that it can specify the
behavior (incremental or set) which needs to be executed.

AlterConfigs Request

AlterConfigs Request (Version: 1) => [resources] validate_only incremental_update
 validate_only => BOOLEAN
 incremental_update => BOOLEAN // new addition
 resources => resource_type resource_name [configs]
 resource_type => INT8
 resource_name => STRING
 configs => config_name config_value
 config_name => STRING
 config_value => STRING

Request Semantics:

The default value of is false. That means that the request will wipe the node's data and sets what is sent in the request.incremental_update
Setting the to true makes sure that existing configs are not deleted. flagincremental_update
Deleting a config in incremental mode is done by sending an empty string as value.
Other existing semantics aren't changed.

AdminClient APIs

org.apache.kafka.clients.admin

public static class Quota {
 public QuotaType type();
 public double value();
 public QuotaSource source();
}

public enum QuotaType {
 PRODUCER_BYTE_RATE((byte) 0, "producer_byte_rate"),
 CONSUMER_BYTE_RATE((byte) 1, "consumer_byte_rate"),
 REQUEST_PERCENTAGE((byte) 2, "request_percentage");

 QuotaType(byte id, String name);
 public byte id();
 public String quotaName();
}

public enum QuotaSource {
 CLIENT_OF_USER((byte) 0, "Client of user"),
 DEFAULT_CLIENT_OF_USER((byte) 1, "Default client of user"),
 USER((byte) 2, "User"),
 CLIENT_OF_DEFAULT_USER((byte) 3, "Client of default user"),
 DEFAULT_CLIENT_OF_DEFAULT_USER((byte) 4, "Default client of default user"),
 DEFAULT_USER((byte) 5, "Default user"), CLIENT((byte) 6, "Client"),
 DEFAULT_CLIENT((byte) 7, "Default client");

 QuotaSource(byte id, String description);
 public byte id();
 public String description();
}

/**
 * Makes sure that the list of resources that is used as key in a hashmap is immutable and has a fixed
implementation for the hashCode.
 */
public class ConfigResourceList {
 public List<ConfigResource> getResourceList();

public class AdminClient {
 public DescribeQuotasResult describeQuotas(Map<ConfigResourceList, Collection<QuotaType>>,
DescribeQuotasOptions options);
 public AlterQuotasResult alterQuotas(Map<ConfigResourceList, Collection<Quota>> configs, AlterQuotasOptions
options);
}
public class DescribeQuotasOptions extends AbstractOptions<DescribeQuotasOptions> {
 public DescribeQuotasOptions timeoutMs(Integer timeout);
}

public class DescribeQuotasResult {
 public Map<List<Resource>, KafkaFuture<Collection<Quota>>> values();
}

public class AlterQuotasOptions extends AbstractOptions<AlterQuotasOptions> {
 public AlterQuotasOptions timeoutMs(Integer timeout);
 public AlterQuotasOptions validateOnly(boolean validateOnly);
}

public class AlterQuotasResult {
 public Map<List<Resource>, KafkaFuture<Void>> results();
}

public class AlterConfigsOptions extends AbstractOptions<AlterConfigsOptions> {
 public AlterConfigsOptions timeoutMs(Integer timeoutMs);
 public AlterConfigsOptions validateOnly(boolean validateOnly);
 public boolean shouldValidateOnly();
 public AlterConfigsOptions incrementalUpdate(boolean incrementalUpdate); // new
 public boolean shouldUpdateIncrementally(); // new
}

Request API

org.apache.kafka.common.requests

public class QuotaCollection {
 public QuotaCollection(ApiError error, Collection<Quota> entries);

 public QuotaCollection(Collection<Quota> entries);

 public ApiError error();
 public Collection<Quota> entries();
}

public class DescribeQuotasRequest extends AbstractRequest {

 public static Schema[] schemaVersions();
 public static DescribeQuotasRequest parse(ByteBuffer buffer, short version);

 public static class Builder extends AbstractRequest.Builder {
 public Builder(Map<List<Resource>, Collection<QuotaType>> quotaSettings);
 public DescribeQuotasRequest build(short version);
 }

 public DescribeQuotasRequest(short version, Map<List<Resource>, Collection<QuotaType>> quotaSettings);
 public DescribeQuotasRequest(Struct struct, short version);

 public Map<List<Resource>, Collection<QuotaType>> quotaTypes();
}

public class DescribeQuotasResponse extends AbstractResponse {
 public static Schema[] schemaVersions();

 public DescribeQuotasResponse(int throttleTimeMs, Map<ConfigResourceList,
KafkaFuture<Collection<Quota>>>);
 public DescribeQuotasResponse(Struct struct);

 public Map<List<Resource>, QuotaCollection> quotas();
}

public class AlterQuotasRequest extends AbstractRequest {
 public static Schema[] schemaVersions();

 public static class Builder extends AbstractRequest.Builder {
 public Builder(Map<List<Resource>, QuotaCollection> quotaSettings);
 public DescribeQuotasRequest build(short version);
 }

 public AlterQuotasRequest(short version, Map<List<Resource>, QuotaCollection> quotas, boolean
validateOnly);
 public AlterQuotasRequest(Struct struct, short version);

 public Map<List<Resource>, QuotaCollection> quotas();
}

public class AlterQuotasResponse extends AbstractResponse {
 public static Schema[] schemaVersions();

 public AlterQuotasRequest(short version, Map<List<Resource>, ApiError> quotas, boolean validateOnly);
 public AlterQuotasRequest(Struct struct, short version);

 public Map<List<Resource>, ApiError> errors();
 public int throttleTimeMs();
}

New Command Line Interface

The command line interface will change a little bit in terms of help message and response format as we will use argparse4j for parsing kafka-config.sh
arguments.

Help Message

usage: config-command [-h] --entity-type {topics,clients,users,brokers}
 [--force FORCE] [--add-config ADDCONFIG]
 [--delete-config DELETECONFIG]
 (--entity-name ENTITYNAME | --entity-default)
 (--describe | --alter)
 (--bootstrap-server BOOTSTRAPSERVERS |
 --adminclient.config CONFIGPROPERTIES |
 --adminclient-property ADMINCLIENTPROPERTY)

Change configs for topics, clients, users, brokers dynamically.

optional arguments:
 -h, --help show this help message and exit
 --entity-type {topics,clients,users,brokers}
 REQUIRED: the type of entity
 (topics/clients/users/brokers)
 --force FORCE Suppresses console prompts
 --add-config ADDCONFIG
 Key Value pairs of configs to add. Square
 brackets can be used to group values which
 contain commas: 'k1=v1,k2=[v1,v2,v2],k3=v3'.
 --delete-config DELETECONFIG
 Config keys to remove in the following form: 'k1,
 k2'.

 You can specify only one in --entity-name and --entity-default

 --entity-name ENTITYNAME
 Name of entity (client id/user principal name)
 --entity-default Default entity name for clients/users (applies to
 corresponding entity type in command line)

 You can specify only one in --alter, --describe

 --describe List configs for the given entity. (default:
 false)
 --alter Alter the configuration for the entity. (default:
 false)

 REQUIRED. You can specify only one in --bootstrap-servers, --adminclient.config

 --bootstrap-server BOOTSTRAPSERVER
 The broker list string in the form
 HOST1:PORT1,HOST2:PORT2.
 --command-config COMMANDCONFIG
 The config properties file for the
 Admin Client.

Process finished with exit code 0

Output Format

 CONFIGS FOR TOPIC topicA

 Name Value Sensitive Read-
only Source
 compression.type = producer false false
Default config
 message.format.version = 1.0-IV0 false false
Default config
 file.delete.delay.ms = 6000 false false Dynamic
topic config
 leader.replication.throttled.replicas = false false
Default config
 max.message.bytes = 1000012 false false
Default config
 min.compaction.lag.ms = 0 false false
Default config
 message.timestamp.type = CreateTime false false
Default config
 min.insync.replicas = 1 false false
Default config
 segment.jitter.ms = 0 false false
Default config
 preallocate = false false false
Default config
 index.interval.bytes = 4096 false false
Default config
 min.cleanable.dirty.ratio = 0.5 false false
Default config
 unclean.leader.election.enable = false false false
Default config
 retention.bytes = 10 false false Dynamic
topic config
 delete.retention.ms = 86400000 false false
Default config
 cleanup.policy = delete false false
Default config
 flush.ms = 9223372036854775807 false false
Default config
 follower.replication.throttled.replicas = false false
Default config
 segment.bytes = 1073741824 false false
Default config
 retention.ms = 604800000 false false
Default config
 segment.ms = 604800000 false false
Default config
 message.timestamp.difference.max.ms = 9223372036854775807 false false
Default config
 flush.messages = 9223372036854775807 false false
Default config
 segment.index.bytes = 10485760 false false
Default config
 producer.byte.rate = 1000 false false
Default user

As seen above, the describe format becomes more organized and it will also return default properties (as the protocol currently supports that). In case of
alter we will also do an extra describe after executing the alter and print the most fresh state.

Compatibility, Deprecation, And Migration Plan

Compatibility

Firstly, the --zookeeper option will be removed from kafka-configs.sh and the backing code will be replaced. Therefore every user will need to change --
 to , or . SCRAM update will be done by the newly zookeeper --bootstrap-servers --adminclient-property --adminclient.config

introduced tool. Other existing behavior will be kept.scram-credentials.sh

Secondly, users as of this KIP would be able to describe all topics or brokers in one step but can't do it for clients and users. For those who have this use
case would still need to use the old command for a while (see below). The reason for this change is currently MetadataRequest provides enough
information about topics and brokers so it's possible to describe all of them in one step but there's no such information about clients and users.

Finally, backward compatibilty (for instance a 2.0 client wants to admin a 1.0 server) will be impacted as some of the protocols are newly created and
doesn't exist in old servers. In these cases users should continue using the scala version of the ConfigCommand by putting the core jar on their classpath.

The old command could be launched through kafka-run-class.sh like this:

bin/kafka-run-class.sh kafka.admin.ConfigCommand --zookeeper localhost:2181 --describe --entity-type topics --
entity-name topicA

Impact

Communicating through the broker instead of Zookeeper allows us to give more protection to Zookeeper as it could be hidden behind a firewall and you
can only allow the broker through it. Also this would allow much finer grain authorization and audit of admin operations in the brokers.

 From the CLI point of view the impact should be minimal as only the option will change but we can assume the Zookeeper is a more --zookeeper
protected resource than the ports of the brokers, therefore we can assume that they have knowledge about it and change with minimal effort.CLIENT

From the compatibility point of view there might be a bigger impact as mentioned above. Since the command now uses the wire protocols (including some
newly introduced ones) the backward compatibility will be impacted. That means that a user can't use a 2.0 client to administrate a 1.0 broker as in the
older broker some of the wire protocols don't exist. This again should be acceptable most of the users as most of the admin commands require the core jar
on the classpath which means that most of the time the commands are executed from an environment with the same version of the brokers. Therefore the
old tool should still be available.

Deprecation

kafka.admin.ConfigCommand will print a warning message saying it is deprecated and will be removed in a future version.

Special Migration Tools

There are no tools required.

Removal Of The Existing Behavior

The current option will be removed with this change as it has minimal impact on the current users.--zookeeper

Listing multiple users' and clients' quotas at once won't be possible. If this is required, users would need to use the old tool.

Test Plan
Most of the functionality can be covered with end-to-end tests. There will be unit tests also to verify the protocol and the broker side logic.

Future Considerations
At this moment this ConfigCommand can describe all the topics and all the brokers with one command but can't describe all clients or users. The reason
for this is that we can gain the required information for topics and brokers by a MetadataRequest but we have no such protocols for getting a list of users
or clients.

Therefore we could have a ConfigEntityList protocol tailored to the needs of the admin client. This protocol would send a list of config entities in the request
and get a list of entities in the response. For instance requesting (type:USER name:user1, type:CLIENT name:) resources would return all the clients of
user1.

	KIP-248 - Create New ConfigCommand That Uses The New AdminClient

