
1.
2.
3.
4.
5.
6.

1.

2.

3.
4.
5.

KIP-226 - Dynamic Broker Configuration

Status
Motivation

Goals:
Public Interfaces

Dynamic configuration
New Broker Configuration Option
Securing passwords in ZooKeeper
Protocol Changes
Public Interface Changes
Tools

Proposed Changes
SSL keystore
Threads
Metrics reporters and their custom configs
Log Cleaner configs
Default Topic configs
Listeners and Security configs

Future Work
Message Format and Inter Broker Protocol

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Deprecate static config in server.properties when a config is made dynamic

Status
Current state: Accepted

Discussion thread: [Change the link from the KIP proposal email archive to your own email thread]here

JIRA: KAFKA-6240

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka brokers are configured using properties (typically provided in a file named) that cannot be updated without restarting the server.properties
broker. Broker configuration options can be described using the new , but the configuration cannot currently be altered.AdminClient

There are several use cases where dynamic updates of broker configs will help to avoid time-consuming restart of brokers. For example:

Update short-lived SSL keystores on the broker
Performance tuning based on metrics (e.g. increase network/IO threads)
Add, remove or reconfigure metrics reporters
Update configuration of all topics consistently across the whole cluster (e.g.)unclean.leader.election.enable
Update log cleaner configuration for tuning
Update listener/security configuration

Goals:

Use existing dynamic configuration mechanism to make commonly updated broker configs dynamic so that they can be updated without restarting
the broker.
Support dynamic default configs that are picked up by all brokers in the cluster, to enable consistent configuration across all brokers (e.g. unclea

)n.leader.election.enable
Support individual broker config overrides for all dynamic configs to enable testing on one broker before the changes are picked up by all brokers.
Enable broker configs to be described and altered using AdminClient.
Continue to support simple property file based configuration so that brokers can be easily started up without any additional configuration steps.

In the first phase of the implementation, commonly updated broker properties will be made dynamic based on known use cases. The goal will be to make
more configs dynamic later if required.

Public Interfaces

Dynamic configuration

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-6240

1.
2.
3.

Dynamic configs for the entity type will be added for a limited set of configuration options by extending the existing dynamic replication quota brokers
config for brokers. The corresponding static config in will be continue to be supported to enable quick start of Kafka brokers with a server.properties
properties file. Where applicable, default cluster-wide configs can be configured to allow consistent values to be used across all brokers (stored in ZK at /c

). For per-broker configs, broker-specific config overrides can be configured (stored in ZK at onfig/brokers/<default>)./config/brokers/id

The precedence used for configs will be:

Dynamic broker-specific config from /config/brokers/id
Dynamic cluster-wide default config from /config/brokers/<default>
Static config from server.properties

Individual broker config overrides will be provided for all the dynamic configs to enable testing. will return all configured configs and defaults AdminClient
in the order of precedence in if are requested. For configs that we want to keep consistent across all brokers, DescribeConfigsResponse synonyms ka

 and will allow updates of cluster-wide defaults, but it will still be possible to configure per-broker overrides for testing. fka-configs.sh AdminClient
Brokers will handle all configs consistently with the precedence specified above.

Dynamic broker configs will be stored in ZooKeeper in JSON format along with the existing replication quota config for entity type . With the brokers
current dynamic configuration implementation, brokers watch configuration update node in ZooKeeper and invoke config handlers when update
notifications are received. The config handler for will be updated to handle changes as well.brokers KafkaConfig

The existing ACL for operation on resource will be applied for broker config updates. As with topic configuration updates, AlterConfigs Cluster alter
can be configured to specify a custom .config.policy.class.name AlterConfigsPolicy.

New Broker Configuration Option

sasl.jaas.config will be supported for brokers to enable dynamic SASL configuration of brokers. The property will use the same format as clients with one
login context specified as the config value. The mechanism name corresponding to the config must be specified as prefix in lower-case (e.g. scram-sha-

. If multple mechanisms are enabled on a listener, separate configs must be provided for each enabled mechanism. The 256.sasl.jaas.config)
property may be preceded by listener name if multiple listeners are configured to use SASL. (e.g listener.name.sasl_ssl.plain.sasl.jaas.

)config

Format: One login context entry using the same format JAAS configuration:

<LoginModuleClass> <ControlFlag> *(<OptionName>=<OptionValue>);

ControlFlag = required|requisite|sufficient|optional

Example:

sasl.jaas.config example

listener.name.sasl_ssl.plain.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
user_alice=”alice-secret”;
listener.name.sasl_ssl.scram-sha-256.sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule
required;

Securing passwords in ZooKeeper

A new broker configuration will be added to specify a secret key that is used to encrypt passwords stored in ZooKeeper. The and SecretKeyFactory Ci
 algorithms as well as the iteration count used will be also be made configurable. The actual algorithms, salt and iteration count will be stored along pher

with the encrypted password to ensure that the password can be decrypted even if the encryption parameters are altered (though these configs are not
being made dynamic at the moment).

Name: Type: password.encoder.secret Password
Name: Type: password.encoder.old.secret Password (only used when is rotated)password.encoder.secret
Name: Type: Default: .keyfactory.algorithmpassword.encoder String if available, PBKDF2WithHmacSHA512 otherwise PBKDF2Wit

 (e.g. Java7)hHmacSHA1
Name: Type: Default:.cipher.algorithmpassword.encoder String AES/CBC/PKCS5Padding (AES-256 if available, AES-128
otherwise)
Name: Type: Integer Default:.key.lengthpassword.encoder 256 if supported, otherwise128
Name: Default: Type: .iterationspassword.encoder Integer 4096

The secret will not be dynamically configurable and hence will never be stored in ZooKeeper. All the dynamic password configs are per-broker configs and
hence there is no requirement to maintain the same secret across all brokers. To change , each broker must be restarted password.encoder.secret
with an updated that contains the new secret in the config as well as the old secret in the config server.properties password.encoder.secret passwor

. The broker will decode all passwords in ZooKeeper using and update the values in d.encoder.old.secret password.encoder.old.secret
ZooKeeper after re-encoding using The config will be used only if the passwords in password.encoder.secret. password.encoder.old.secret
ZooKeeper are encoded using the old value and will be ignored otherwise.

Broker configuration in ZooKeeper will be protected using ACLs and will no longer be world-readable by default. It is expected that secure deployments of
Kafka will also use network segmentation to limit ZooKeeper access.

Protocol Changes

A new option will be added to to return all the configs which may be used as the value of the specified include_synonyms DescribeConfigsRequest
config if the config was removed. For example, config for a topic will return the broker config as a synonym ifflush.ms log.flush.interval.ms incl

 will be return all synonyms in the order of precedence. This is particularly useful to obtain the =ude_synonyms true. DescribeConfigsResponse
default value that the config will revert to if a config override is removed. As dynamic broker configs are being added at per-broker and cluster-default
levels, can be useful to list all the configured values and the precedence used to obtain the currently configured value.include_synonyms

 DescribeConfigsRequest version will be bumped up to 1.

DescribeConfigsRequest

DescribeConfigs Request (Version: 1) => [resource [config_name]] include_synonyms
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 config_name => STRING
 include_synonyms => BOOLEAN

DescribeConfigs Response (Version: 1) => throttle_time_ms [entities]
 throttle_time_ms => INT32
 entities => error_code error_message resource [configs]
 error_code => INT16
 error_message => STRING
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 configs => [config_entry [synonym]] <= Added [synonym]
 config_entry =>
 config_name => STRING
 config_value => NULLABLE_STRING
 read_only => BOOLEAN
 config_source => INT8 <= Replaced boolean is_default with more generic config_source (see
below for values)
 is_sensitive => BOOLEAN
 synonym => <= NEW
 config_name => STRING
 config_value => NULLABLE_STRING
 config_source => INT8 <= may be one of
(TOPIC|DYNAMIC_BROKER|DYNAMIC_DEFAULT_BROKER|STATIC_BROKER|DEFAULT)

When version is increased after 1.1.0 release, a new error code will be added to notify clients MetadataRequest ENDPOINT_NOT_FOUND_ON_LEADER
when a listener is available on the broker used to obtain metadata, but not on the leader of a partition. This could be a transient error when listeners are
added and will be retried in the same way as . Broker will continue to return to clients using older LEADER_NOT_AVAILABLE LEADER_NOT_AVAILABLE
version of . In 1.1.0, brokers will return instead of in older versions.MetadataRequest LEADER_NOT_AVAILABLE UNKNOWN_SERVER_ERROR

Public Interface Changes

A new interface will be added to notify reconfigurable objects of configuration changes. For example, metrics reporters that support Reconfigurable
reconfiguration can implement the interface to enable reconfiguration without broker restart. The interface will also be implemented by Reconfigurable
all internal classes which support reconfiguration (e.g.)ChannelBuilder

Reconfigurable

package org.apache.kafka.common;

import java.util.Map;
import java.util.Set;

/**
 * Interface for reconfigurable classes that support dynamic configuration.
 */
public interface Reconfigurable extends Configurable {

 /**
 * Returns the names of configs that may be reconfigured.
 */
 Set<String> reconfigurableConfigs();

 /**
 * Validates the provided configuration. The provided map contains
 * all configs including any reconfigurable configs that may be different
 * from the initial configuration.
 */
 boolean validateReconfiguration(Map<String, ?> configs);

 /**
 * Reconfigures this instance with the given key-value pairs. The provided
 * map contains all configs including any reconfigurable configs that
 * may have changed since the object was initially configured using
 * {@link Configurable#configure(Map)}.
 */
 void reconfigure(Map<String, ?> configs);

}

The classes and used by will be updated to include config synonyms in the DescribeConfigsOptions DescribeConfigsResult AdminClient
result.

New methods in DescribeConfigOptions

/**
 * Return true if synonym configs should be returned in the response.
 */
public boolean includeSynonyms() {
 return includeSynonyms;
}

/**
 * Set to true if synonym configs should be returned in the response.
 */
public DescribeConfigsOptions includeSynonyms(boolean includeSynonyms) {
 this.includeSynonyms = includeSynonyms;
 return this;
}

New methods in ConfigEntry

/**
 * Returns all config values that may be used as the value of this config along with their source,
 * in the order of precedence. The list starts with the value returned in this ConfigEntry.
 * The list is empty if synonyms were not requested using {@link DescribeConfigsOptions#includeSynonyms
(boolean)}.
 */
public List<ConfigSynonym> synonyms() {
 return synonyms;
}

Public methods of ConfigSynonym

public static class ConfigSynonym {

 /**
 * Returns the name of this configuration.
 */
 public String name() {
 return name;
 }

 /**
 * Returns the value of this configuration, which may be null if the configuration is sensitive.
 */
 public String value() {
 return value;
 }

 /**
 * Returns the source of this configuration.
 */
 public ConfigSource source() {
 return source;
 }
}

ConfigSource enum

public enum ConfigSource {
 DYNAMIC_TOPIC_CONFIG, // dynamic topic config that is configured for a specific topic
 DYNAMIC_BROKER_CONFIG, // dynamic broker config that is configured for a specific broker
 DYNAMIC_DEFAULT_BROKER_CONFIG, // dynamic broker config that is configured as default for all brokers in
the cluster
 STATIC_BROKER_CONFIG, // static broker config provided as broker properties at start up (e.g.
server.properties file)
 DEFAULT_CONFIG // built-in default configuration for configs that have a default value
}

Tools

 kafka-configs.sh will be updated to configure defaults and overrides for dynamic configuration options for the entity type . This will be done brokers
using the new AdminClient that talks to brokers rather than to ZooKeeper so that password encryption and config validation need to be implemented only
in the broker. The full migration of ConfigCommand to use the new AdminClient will be done under .KIP-248

Two new options will be added to kafka-configs.sh under this KIP to enable broker config describe and update using the new AdminClient.

--bootstrap-server <host>:<port>
--command-config <config-file>

Example:

Add/update broker-specific config for broker with broker id 0:

bin/kafka-configs.sh --bootstrap-server localhost:9092 --command-config /path/adminclient.props --alter --add-
config 'ssl.keystore.location=keystore1.jks,ssl.keystore.password=password1' --entity-name 0 --entity-type brokers

Add/update cluster-wide default config:

bin/kafka-configs.sh --bootstrap-server localhost:9092 --alter --add---command-config /path/adminclient.props
config 'unclean.leader.election.enable=false' --entity-default --entity-type brokers

Delete broker-specific config (the actual config will revert to its default value, see of configs):precedence

bin/kafka-configs.sh --bootstrap-server localhost:9092 --alter --delete---command-config /path/adminclient.props
config unclean.leader.election.enable --entity-type brokers --entity-name 0

Proposed Changes

SSL keystore

Use case: Support short-lived SSL certificates for increased security

Config scope: Broker (/)config/brokers/id

Config options:

ssl.keystore.type
ssl.keystore.location
ssl.keystore.password
ssl.key.password

Dynamic update changes:

Keystore will be updated by reconfiguring the channel builder to create a new . Existing connections will not be affected, new SslFactory
connections will use the new keystore.

Threads

Usecase:: Increase or decrease threads based on traffic pattern. This is useful for performance tuning based on metrics at runtime.

Config scope: Default for whole cluster ()/configs/brokers/<default>

Config options:

num.network.threads
num.io.threads
num.replica.fetchers
num.recovery.threads.per.data.dir
background.threads

Dynamic update changes:

Thread pools that don’t require thread affinity will be updated to use resizable thread pools:
num.io.threads
num.recovery.threads.per.data.dir
background.threads

num.network.threads: To increase threads, existing connections will continue to be processed in their processor threads and new
connections will be processed on new threads. Allocation of processors for new connections will take connection count into account (instead of
the current round-robin allocation) to ensure that connections are balanced across processors. When thread count is decreased, threads with the
smallest number of active connections will be terminated after closing any connections being processed on those threads. New connections will
be processed on remaining threads.
num.replica.fetchers: Affinity of partitions to threads will be preserved for ordering.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-248+-+Create+New+ConfigCommand+That+Uses+The+New+AdminClient

Metrics reporters and their custom configs

Use case: Add new metrics reporter or reconfigure existing metrics reporter

Config scope: Default for whole cluster ()/configs/brokers/<default>

Config options:

metric.reporters

Dynamic update changes:

Addition and removal of metrics reporters will be supported. Since metrics reporters may use custom configs, dynamic configuration options for
brokers may specify any custom configuration. and will be updated to accept custom configs.AdminClient kafka-configs.sh
Metrics reporters that support reconfiguration may implement the interface If any of the configs specified in . Reconfigurable Reconfigurable#

 is updated dynamically, the reporter instance is reconfigured using reconfigurableConfigs Reconfigurable#reconfigure(Map).

Log Cleaner configs

Use case: Add more log cleaner threads or increase buffer size for tuning

Config scope: Default for whole cluster ()/configs/brokers/<default>

Config options:

log.cleaner.threads
log.cleaner.io.max.bytes.per.second
log.cleaner.dedupe.buffer.size
log.cleaner.io.buffer.size
log.cleaner.io.buffer.load.factor
log.cleaner.backoff.ms

Dynamic update changes:

Config changes will be applied to existing log cleaner threads from the next iteration. Threads may be added or removed. If any of the old log
cleaner threads had died due to errors, new threads will be created to replace those too so that the number of threads after an update reflects the
configured log.cleaner.threads.

Default Topic configs

Use case: Even though topic configs can be set per-topic dynamically, it is convenient to configure properties like unclean.leader.election.
consistently across the whole cluster.enable

Config scope: Default for whole cluster ()/configs/brokers/<default>

Config options (and the equivalent topic configs):

log.segment.bytes (segment.bytes)
log.roll.ms, log.roll.hours (segment.ms)
log.roll.jitter.ms, log.roll.jitter.hours (segment.jitter.ms)
log.index.size.max.bytes (segment.index.bytes)
log.flush.interval.messages (flush.messages)
log.flush.interval.ms (flush.ms)
log.retention.bytes (retention.bytes)
log.retention.ms, log.retention.minutes, log.retention.hours (retention.ms)
log.index.interval.bytes (index.interval.bytes)
log.cleaner.delete.retention.ms (delete.retention.ms)
log.cleaner.min.compaction.lag.ms (min.compaction.lag.ms)
log.cleaner.min.cleanable.ratio (min.cleanable.dirty.ratio)
log.cleanup.policy (cleanup.policy)
log.segment.delete.delay.ms (file.delete.delay.ms)
unclean.leader.election.enable (unclean.leader.election.enable)
min.insync.replicas (min.insync.replicas)
max.message.bytes (max.message.bytes)
compression.type (compression.type)
log.preallocate (preallocate)
log.message.timestamp.type (message.timestamp.type)
log.message.timestamp.difference.max.ms (message.timestamp.difference.max.ms)

Dynamic update changes:

These properties will be supported as dynamic defaults that are used by all brokers since we don’t want to have different default values on
different brokers. Configuration precedence for these properties will be:

Dynamic topic level ()/configs/topics/topicName
Dynamic broker level ()/configs/brokers/id
Dynamic default for all brokers in cluster ()/configs/brokers/<default>

Static server.properties

Listeners and Security configs

Use cases:

Add a new listener, e.g. to add a new security protocol or make inconsistent changes to existing security protocol (e.g change CA for SSL)
Configure SSL/SASL configs for new security protocol
Remove an old listener after new listener has been added to all brokers (e.g. after changing CA for SSL)
Update advertised listeners, e.g. to set IP address after broker has been started since in some environments broker address is known only after
broker has started up

Config options:

Listener Configs

listeners
advertised.listeners
listener.security.protocol.map

Common security config

principal.builder.class

SSL Configs

ssl.protocol
ssl.provider
ssl.cipher.suites
ssl.enabled.protocols
ssl.truststore.type
ssl.truststore.location
ssl.truststore.password
ssl.keymanager.algorithm
ssl.trustmanager.algorithm
ssl.endpoint.identification.algorithm
ssl.secure.random.implementation
ssl.client.auth

SASL Configs

sasl.jaas.config
sasl.kerberos.service.name
sasl.kerberos.kinit.cmd
sasl.kerberos.ticket.renew.window.factor
sasl.kerberos.ticket.renew.jitter
sasl.kerberos.min.time.before.relogin
sasl.enabled.mechanisms
sasl.kerberos.principal.to.local.rules

 Dynamic update changes:

SSL configs will be updated by reconfiguring and creating a new . If SSL is used for inter-broker communication, ChannelBuilder SslFactory
inconsistent changes (e.g changing CA) should be made by adding a new listener with the new properties. This is true for SASL as well.
SASL configuration updates will be supported using the dynamic JAAS configuration option sasl.jaas.config
Updates to will re-register the new listener in ZK. This update will be not allowed for the listener used in inter-broker advertised.listeners
communication. In addition to this, will not allow updates to the listener that was used to make the alter request. AdminClient
When changes are made to listeners, additional logic will be required in the controller to broadcast the updated metadata to all brokers.
All the security configs can be dynamically configured for new listeners. In the initial implementation, only some configs will be dynamically
updatable for existing listeners (e.g. SSL keystores). Support for updating other security configs dynamically for existing listeners will be added
later.

 Limitations:

Configuration updates will not be allowed for the listener used in inter-broker communication. This KIP will not allow dynamic updates to inter-
broker security protocol or listener name. Support for changing inter-broker security configuration without a restart will be done in a follow-on KIP
along with additional validation to ensure that all brokers have enabled the new config.

Future Work

Message Format and Inter Broker Protocol

Use case: Avoid additional rolling restarts during upgrade

Config scope: Default for whole cluster ()/configs/brokers/<default>

Config options:

log.message.format.version
inter.broker.protocol.version
inter.broker.listener.name
security.inter.broker.protocol
sasl.mechanism.inter.broker.protocol

Dynamic update changes:

AdminClient needs to verify that all brokers in the cluster support the new version before making an update. To enable this, the version of the
broker will be added to the JSON registered by each broker during startup at . To avoid all brokers reading version /brokers/ids/id
information from ZooKeeper, the controller should propagate this information in This requires protocol change. . UpdateMetadataRequest
Note also that this approach only allows verification of the version of brokers that are alive at the time is executedAlterConfigs .
Additional validation is required before changing inter-broker listener or security configuration. This should ensure that the client-side and server-
side configs match and also that all brokers in the cluster support the new configuration.

Compatibility, Deprecation, and Migration Plan
Broker configuration using a properties object or the properties file will continue to be supported. So users who do not server.properties
configure dynamic broker options will not be impacted.
When downgrading from a new broker to an older version that does not support dynamic configs, any configs that were dynamically configured
needs to be added to . The current configs which include dynamic configs can be obtained using .server.properties kafka-configs.sh
If a config is renamed, broker will be updated to automatically register a dynamic config with the new name that has the value of the old config, if
the old config was dynamically configured. So no action is required during upgrade. It will be up to the user to delete the old config when no
downgrades are expected.

Rejected Alternatives

Deprecate static config in server.properties when a config is made dynamic

It is useful to support static configs in to enable quick start of Kafka without setting up new config options in ZooKeeper. To retain server.properties
the simple user experience, we will continue to enable starting up Kafka with a properties file.

	KIP-226 - Dynamic Broker Configuration

