
1.  
2.  

1.  

2.  

3.  

4.  

Discussion: Topology Optimizations for Footprint 
Reduction
 

Background and Motivation
The persistent storage footprint of a Kafka Streams application contains the following aspects:

The internal topics created on the Kafka cluster side.
The materialized state stores on the Kafka Streams application instances side.

 

There have been some questions about reducing these footprints, especially since many of them are not necessary. For example, there are redundant 
internal topics, as well as unnecessary state stores that takes up space but also affect performance. When people are pushing Streams to production with 
high traffic, this issue would be more common and severe. Reducing the footprint of Streams have clear benefits of Kafka Streams operations.

Proposal

There are a few tasks that we have summarized so far, under   (sorted in terms of 

ROI):

Reduce #.state stores for KTable, hence #. Changelog topics. Today we always “physically” materialize a KTable when user give a queryable 
name, but we can consider only “logically” materialize a KTable, for example for KTables generated from filter / mapValues / etc.

Post KIP-182 would be a good timing to do this task, as we have layered the appropriate public APIs for this, so the code refactoring for this 
project would be simpler. It would be a medium investment with high return project.

Reduce #.repartition topics. The repartition topics for aggregations and joins may be duplicated, i.e. containing exactly the same data as other 
topics. We can refactor our DSL translation mechanism from operator-by-operator to some global policy with topology optimizations to remove 
such duplicates. Example JIRA: KAFKA-4601

The investment of this sub-task may be high due to DSL translation refactoring, but this big project can also come with big returns since topology 
optimization can also benefit KSQL.

Reduce #.changelog topics. The source topics of the KTable can be also used as its changelog topics, so we do not need to have a duplicate 
changelog topic. Today we already do that for external source topics, but not for internal repartition topics.

The investment of this task is low, but its impact may also be low since this scenario would be less common.

Reduce #.state stores for KStream, hence #. Changelog topics. Today the only place that we would require a state store for KStream is 
stream-stream joins, however it is sub-optimal to use a windowed-kv-store for such scenarios. What’s more is that if the joining KStreams are 
directly from some Kafka topics, then the changelog topic for these state stores would just be the duplicate of theses source topics of the Stream, 
since the store is append-only; even if there is no direct Kafka topics for the joining KStreams, we can still consider using the “indirect” source 
topic and apply the operators on-the-fly when resuming the joins.

If we remove the changelog topics completely for state stores of stream-stream joins, we need to consider how to restore the state from other 
topics (could be the source topic / repartition topic, etc); furthermore we can replace the current implementation of stream-stream joins. For 

example:   

This would be a medium to high investment, and the return is unknown since we are not sure how common is stream-stream join in practice.

 

I'd like to proposal a very high-level solution for this general improvement. The key is to avoid "one-patch-per-optimization" approach, which would make 
the parsing logic very complicated over time. And I feel it is important to discuss and communicate this principle sooner than later in our team as well as to 
the community as we have observed people starting to pick some of them up.

 Unable to render Jira issues macro, execution 

error.

 Unable to render Jira issues macro, execution 

error.

https://issues.apache.org/jira/browse/KAFKA-4601
https://issues.apache.org/jira/browse/KAFKA-4601


1.  

2.  

3.  

Here is the high-level proposal:

Internal Streams Builder would keep an internal object that keep track of the currently built-in-progress topology. This is to allow them to go 
beyond the independent "one-operator-at-time" building process.
When parsing a new operator, comparing its specifications (the involved processor, the required queryable state, whether it is logging enabled, 
etc) with the current built-in-progress topology, and decide to add new processor / modify existing processor, with building decisions like adding 
new / re-using state stores (in the KTableXXProcessorSupplier), adding new / reusing internal topics, etc.
Admittedly such decisions may not be optimally made statically without taking workloads etc, but for the first version I think it is acceptable with 
hard-written rules; but we'd better capture this rule-based framework in a single class / a few classes that can be independently interfaced with its 
calling classes and be extended to more complicated optimization methods in the future.


	Discussion: Topology Optimizations for Footprint Reduction

