KIP-257 - Configurable Quota Management

® Status
® Motivation
O Scenarios
© Goals
® Public Interfaces
© Broker Configuration Option
© New Interfaces
® Proposed Changes
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives
© Introduce new gquota management options instead of a callback
© Enable management of client quotas and replication quotas using a single callback interface
© Use Scala traits for public interfaces similar to Authorizer

Status

Current state: Accepted
Discussion thread: here
JIRA: KAFKA-6576

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Kafka brokers support quotas that enforce rate limits to prevent clients saturating the network or monopolizing broker resources. Fet ch/Pr oduce quotas
can be configured to limit network bandwidth usage and Request quotas can be configured to limit CPU usage (network and I/O thread time). Client
quotas may be configured at <user, client-id>, <user>or<client-id>levels and defaults may be defined at each level. For any request, the
most specific quota configuration that matches the (user, client-id) of the requestis applied.

Quotas are configured using the tool kaf ka- confi gs. sh, which persists quotas in ZooKeeper. Brokers watch quota configuration in ZooKeeper and
enforce the currently configured quota for each request. All brokers use the same quota configuration.

Kafka currently does not support customization of quota allocation. In some scenarios, customization of quota limits will be useful.

Scenarios

1. Kafka brokers currently group clients based on user principal and/or client-id for quota enforcement. If quotas are configured at <user, client-
i d> level, all requests that share the user principal and client-id will share the quota. If quotas are configured at <user > level, all requests that
share the user principal but don't have a matching <user, cli ent-i d> quota configuration share the <user > quota (and similarly for <cl i ent
-id> quotas). In some scenarios, it is useful to define a quota group that combines multiple user principals and/or client-ids. All the requests
from the group may then share a single quota.

2. Some clients may have access only to a few topics which are hosted on a subset of brokers. The load from these clients will be mostly on the
subset of brokers that are leaders of that subset of topic partitions. Rather than allocate a fixed quota for these clients on each broker, it will be
useful to have quotas that are proportional to the number of partitions used by the client that are hosted on the broker. Since partition leaders may
change dynamically, it will be better to compute quotas at runtime rather than update ZooKeeper with new quotas whenever partition leaders
change.

Goals

® Enable quotas to be customized using a configurable callback.

® Ensure that the callback interface will not prevent us from adding new levels of quotas in future. For example, we may want to introduce the
concept of user groups. It should be possible to handle groups in a consistent way for ACLs as well as quotas using the Authorizer interface and
the new quota callback interface respectively.

® Enable custom callbacks to access quotas configured in ZooKeeper easily so that existing tools can be used to manage persisted quota
configuration if required.

® Enable custom callbacks to track partition leaders easily to support partition-based quotas so that callbacks dont need access to ZooKeeper.

Public Interfaces

Broker Configuration Option

https://lists.apache.org/thread.html/4120853d8d9c61ceeea9bb6e526966304fc69edc959b871f7251ca1b@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-6576

A new broker property will be added to configure a callback for determining client quotas (Fet ch/ Pr oduce/ Request quotas). This will be a dynamic
broker configuration option that can be updated without restarting the broker. This KIP does not propose to add custom callbacks for replication quotas, but
we could add one in future if a requirement arises.

Name: cl i ent. quot a. cal | back. cl ass

Type: CLASS

Mode: Dynamically configurable as cluster-default for all brokers in the cluster

Description: The fully qualified name of a class that implements the O i ent Quot aCal | back interface, which is used to determine quota limits
applied to client requests. By default, <user, client-id>, <user>or<client-id> quotas stored in ZooKeeper are applied. For any given
request, the most specific quota that matches the user principal of the session and the client-id of the request is enforced by every broker.

New Interfaces
The following new public classes/traits will be introduced in the package or g. apache. kaf ka. ser ver. quot a (in the Kafka clients project).

The quota types supported for the callback will be FETCH PRODUCE/ REQUEST.

Quota types

public enum C i ent Quot aType {
PRODUCE,
FETCH,
REQUEST

C i ent Quot aCal | back must be implemented by custom callbacks. It will also be implemented by the default quota callback. Callback
implementations should cache persisted configs if necessary to determine quotas quickly since C i ent Quot aCal | back.quot a() will be invoked on
every request.

Client Quota Callback

/**

* Quota callback interface for brokers that enables custonization of client quota conputation.
*/

public interface CientQuotaCall back extends Configurable {

* Quota cal l back invoked to determine the quota netric tags to be applied for a request.
* Quota limts are associated with quota netrics and all clients which use the sanme
* netric tags share the quota limt.

* @aram quot aType Type of quota requested

* @aram principal The user principal of the connection for which quota is requested

* @aramclientld The client id associated with the request

* @eturn quota netric tags that indicate which other clients share this quota

*/

Map<String, String> quotaMetricTags(C ientQotaType quotaType, KafkaPrincipal principal, String clientld);

/**

* Returns the quota limt associated with the provided netric tags. These tags were returned from

* a previous call to {@ink #quotaMetricTags(C ientQuotaType, KafkaPrincipal, String)}. This method is
* invoked by quota nmanagers to obtain the current quota linmt applied to a netric when the first request
* using these tags is processed. It is also invoked after a quota update or cluster netadata change.

* |f the tags are no longer in use after the update, (e.g. this is a {user, client-id} quota nmetric

* and the quota nowin use is a {user} quota), null is returned.

* @aram quot aType Type of quota requested

* @aramnetricTags Metric tags for a quota netric of type "“quotaType’

* @eturn the quota limt for the provided nmetric tags or null if the nmetric tags are no |onger in use
*/

Doubl e quotaLi mt(d ientQotaType quotaType, Map<String, String> nmetricTags);

| **

* Quota configuration update callback that is invoked when quota configuration for an entity is
* updated in ZooKeeper. This is useful to track configured quotas if built-in quota configuration
* tools are used for quota nanagenent.

*

* @ar am quot aType Type of quota being updated

* @aram quotaEntity The quota entity for which quota is being updated

* @ar am newval ue The new quota val ue

*/

voi d updat eQuot a(Cl i ent Quot aType quotaType, CientQuotaEntity quotaEntity, double newval ue);

/**

* Quota configuration renoval callback that is invoked when quota configuration for an entity is
* renoved in ZooKeeper. This is useful to track configured quotas if built-in quota configuration
* tools are used for quota managenent.

*

* @ar am quot aType Type of quota being updated

* @aram quotaEntity The quota entity for which quota is being updated

*/

voi d renoveQuot a(C i ent Quot aType quotaType, CientQuotaEntity quotaEntity);

* Returns true if any of the existing quota configs may have been updated since the |ast call

* to this method for the provided quota type. Quota updates as a result of calls to

* {@ink #updated usterMetadata(C uster)}, {@ink #updateQuota(d ientQotaType, CientQuotaEntity, double)}
* and {@ink #removeQuota(CientQuotaType, ClientQuotaEntity)} are autonamtically processed.

* So callbacks that rely only on built-in quota configuration tools always return false. Quota call backs

* with external quota configuration or customreconfigurable quota configs that affect quota Iimts nust

* return true if existing nmetric configs may need to be updated. This nmethod is invoked on every request

* and hence is expected to be handl ed by callbacks as a sinple flag that is updated when quotas change.

* @aram quot aType Type of quota
*/
bool ean quot aReset Requi red(C i ent Quot aType quot aType);

/**

* Metadat a update call back that is invoked whenever UpdateMetadata request is received from
* the controller. This is useful if quota conputation takes partitions into account.

* Topics that are being deleted will not be included in “cluster”.

*

* @aram cluster Cluster netadata including partitions and their |eaders if known

* @eturn true if quotas have changed and netric configs nmay need to be updated

*/

bool ean updat eCl ust er Met adat a(C uster cluster);

/**
* Closes this instance.
*/

void close();

The callback is invoked to obtain the quota limit as well the metric tags to be used. These metric tags determine which entities share the quota.

By default the tags "user " and "cl i ent - i d" will be used for all quota metrics. When <user, cli ent-i d> quota config is used, user tag is set to user
principal of the session and client-id tag is set to the client-id of the request. If <user > quota config is used, user tag is set to user principal of the session
and client-id tag is set to empty string. Similarly, if <cl i ent - i d> quota config is used, the user tag is set to empty string. This ensures that the same
guota sensors and metrics are shared by all requests that match each quota config.

When quota configuration is updated in ZooKeeper, quota callbacks are notified of configuration changes. Quota configuration entities can be combined to
define quotas at different levels.

ClientQuotaEntity

/**

* The netadata for an entity for which quota is configured. Quotas may be defined at
* different levels and “configEntities® gives the list of config entities that define
* the level of this quota entity.

*/
public interface dientQotaEntity {
/**
* Entity type of a {@ink ConfigEntity}
*/
public enum Confi gEntityType {
USER,
CLI ENT_I D,
DEFAULT_USER,
DEFAULT_CLI ENT_I D
}
/**
* Interface representing a quota configuration entity. Quota nay be
* configured at levels that include one or nore configuration entities.
* For exanple, {user, client-id} quota is represented using two
* instances of ConfigEntity with entity types USER and CLI ENT_I D.
*/
public interface ConfigEntity {
/**
* Returns the name of this entity. For default quotas, an enpty string is returned.
*/
String nane();
/**
* Returns the type of this entity.
*/
ConfigEntityType entityType();
}
/**
* Returns the list of configuration entities that this quota entity is conprised of.
* For {user} or {clientld} quota, this is a single entity and for {user, clientld}
* quota, this is alist of tw entities.
*/
Li st <Confi gEntity> configEntities();
}

When partition leaders change, controller notifies brokers using Updat eMet adat a request. Quota callbacks are notified of metadata changes so that
callbacks that base quota computation on partitions have access to the current metadata. The existing public interface or g. apache. kaf ka. conmon.

Cl ust er will be used for metadata change notification.

Proposed Changes

Cl i ent Quot aManager and d i ent Request Quot aManager will be updated to move quota configuration management into a new class Def aul t Quot a
Cal | back that implements O i ent Quot aCal | back. If a custom callback is not configured, Def aul t Quot aCal | back will be used.

If a custom callback is configured, it will be instantiated when the broker is started. Dynamni c¢Br oker Confi g will be updated to handle changes to the
callback. Kaf kaApi s will invoke quot aCal | back. updat ed ust er Met adat a when Updat eMet adat a request is received from the controller. This will
be ignored by the default quota callback. When Confi gHandl er invokes Cl i ent Quot aManager . updat eQuot a to process dynamic quota config
updates, quot aCal | back. updat eQuot a will be invoked. The existing logic to process quota updates will be moved to the default quota callback.

Compatibility, Deprecation, and Migration Plan

® What impact (if any) will there be on existing users?

None, the current behaviour will be retained as default.

Rejected Alternatives

Introduce new quota management options instead of a callback

We could implement different quota algorithms in Kafka and support quota groups, partition-based quotas etc. But this would require Kafka to manage
these groups, mapping of users to partitions etc, increasing the complexity of the code. Since it will be hard to include support for all possible scenarios
into the broker code, it will be simpler to make quota computation configurable. This also enables the computation to be altered dynamically without
restarting the broker since the new option will be a dynamic broker config.

Enable management of client quotas and replication quotas using a single callback interface
The configuration and management of replication quotas are completely separate from client quota management in the broker. Since the configuration
entities are different, it will be simpler to keep them separate. It is not clear if there are scenarios that require custom replication quotas, so this KIP only
addresses client quotas.

Use Scala traits for public interfaces similar to Authorizer

For compatibility reasons, we are now using Java rather than Scala for all pluggable interfaces including those on the broker. There is already a KIP to

move Aut hori zer to Java as well. As we will be removing support for Java 7 in the next release, we can also use default methods in Java when we need
to update pluggable Java interfaces. So the plan is to use Java for all new pluggable interfaces.

	KIP-257 - Configurable Quota Management

