KIP-266: Fix consumer indefinite blocking behavior

® Status
® Motivation
® Public Interfaces

© Consumer#position
Consumer#committed and Consumer#commitSync
Consumer#poll
Consumer#partitionsFor
Consumer#listTopics
Consumer#offsetsForTimes
Consumer#beginningOffsets
Consumer#endOffsets

© Consumert#close
® Compatibility, Deprecation, and Migration Plan
® Feasible and Rejected Alternatives

O O 0O O O 0 O

Status

Current state: Accepted

Discussion thread: here

& Unable to render Jira issues macro, execution
JIRA:
error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

KafkaConsumer has a long history of indefinite blocking behavior which has been a continual cause of user frustration. This KIP aims to fix this problem in
two ways:

1. We introduce a new configuration def aul t . api . ti neout . ms to control the maximum time that current blocking APIs will await before raising a
timeout error.
2. We add overloaded APIs to allow for custom timeout control. This is intended for advanced usage such as in Kafka Streams.

Some care must be taken in the case of the pol | () since many applications depend on the current behavior of blocking until an assignment is found. This

KIP retains this behavior for pol I (1 ong), but introduces a new API pol | (Dur ati on), which always returns when the timeout expires. We will
deprecate pol | (1 ong) and remove itin a later major release.

Public Interfaces

This KIP adds def aul t . api . ti meout. ns as a new configuration for the consumer which controls the default timeout for methods which do not accept a
timeout as an argument. The default value of def aul t. api . ti neout . ns will be one minute.

Below we document the APIs that this timeout will impact and how the behavior changes.
The following APIs currently block indefinitely until either the operation completes successfully or an unrecoverable error is encountered. Following this

KIP, these methods will now raise org.apache.kafka.common.errors.TimeoutException if neither of these conditions have been reached prior to expiration
of the time specified by def aul t . api . ti meout . ns.


http://search-hadoop.com/m/Kafka/uyzND1AnOdl1ft1of2?subj=+DISCUSSION+KIP+266+Add+TimeoutException+to+KafkaConsumer+position+
https://kafka.apache.org/documentation/streams/

void comm t Sync();
voi d commi t Sync(Map<Topi cPartition, O fset AndMet adata> of fsets);
| ong position(TopicPartition partition);

O f set AndMet adat a conmi tt ed( Topi cPartition partition);

The following APIs currently block for at most the time configured by request.timeout.ms until the operation completed successfully or an unrecoverable
error is encountered. Following this KIP, they will instead use the timeout indicated by default.api.timeout.ms. As before, when the timeout is reached, org.
apache.kafka.common.errors.TimeoutException will be raised to the user.

Li st<Partitionlnfo> partitionsFor(String topic);

Map<String, List<Partitionlnfo>> 1istTopics();

Map<Topi cPartition, O fsetAndTi mestanp> of f set sFor Ti mes( Map<Topi cPartition, Long> tinestanpsToSearch);
Map<Topi cPartition, Long> begi nni ngCffsets(Col |l ecti on<TopicPartition> partitions);

Map<Topi cPartition, Long> begi nni ngOfifsets(Col |l ecti on<TopicPartition> partitions);

The current default timeout for the consumer is just over five minutes. It is intentionally set to a value higher than max.poll.interval.ms, which controls how
long the rebalance can take and how long a JoinGroup request will be held in purgatory on the broker. In this KIP, we propose to change the default value
of request.timeout.ms to 30 seconds. The JoinGroup API will be treated as a special case and its timeout will be set to a value derived from max.poll.
interval.ms. All other request types will use the timeout configured by request.timeout.ms.

As mentioned above, this KIP also adds overloaded APIs to allow for custom timeout control. The new APIs are documented below:

Consuner #posi ti on

A Ti neout Except i on will be thrown when the time spent exceeds t i meout :


http://request.timeout.ms
http://max.block.ms

KafkaConsumer#position(TopicPartition topicPartition))

/**

*

*

Get the offset of the <i>next record</i> that will be fetched (if a record with that offset exists).
This nethod may issue a renpte call to the server if there is no current position for the given

partition.
* <p>
* This call will block until either the position could be determi ned or an unrecoverable error is
* encountered (in which case it is thrown to the caller).
*
* @arampartition The partition to get the position for
+ * @aram ti meout The maxi mum duration of the nethod
*
* @eturn The current position of the consunmer (that is, the offset of the next record to be fetched)
* @hrows Il egal Argunent Exception if the provided TopicPartition is not assigned to this consuner
* @hrows org.apache. kaf ka. clients. consurer. I nvalidOfsetException if no offset is currently defined for
* the partition
* @hrows org.apache. kaf ka. cormon. errors. WakeupException if {@ink #wakeup()} is called before or while
this
* function is called
* @hrows org.apache. kaf ka. cormon. errors. Interrupt Exception if the calling thread is interrupted before or
whil e
* this function is called
+ * @hrows org.apache. kaf ka. cormon. errors. Ti neout Exception if tine spent blocking exceeds the { @ode
timeout}
* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the
exception for nore details
* @hrows org.apache. kaf ka. cormon. errors. Aut hori zati onException if not authorized to the topic or to the
* configured groupld. See the exception for nore details
* @hrows org.apache. kaf ka. cormon. Kaf kakException for any other unrecoverable errors
*/
+ I ong position(TopicPartition partition, Duration tineout);
Consuner #conm t t ed and Consuner #conmmi t Sync

Similarily, this will also be applied to other methods in KafkaConsumer that blocks indefinitely.

KafkaConsumer#blocking methods

this

whi | e
*

*
excepti
*

*

*

+ *
ti meout
*/
O f

Get the last committed offset for the given partition (whether the commt happened by this process or
another). This offset will be used as the position for the consuner in the event of a failure.

<p>

This call will block to do a rempte call to get the latest committed offsets fromthe server.

@aram partition The partition to check
@ar am t i meout The nmaxi mum duration of the nethod

@eturn The last committed of fset and netadata or null if there was no prior conmt
@ hrows org. apache. kaf ka. common. errors. WakeupException if {@ink #wakeup()} is called before or while

function is called
@ hrows org. apache. kaf ka. cormon. errors. Interrupt Exception if the calling thread is interrupted before or

this function is called

@hrows org. apache. kaf ka. conmon. errors. Aut henti cati onException if authentication fails. See the

on for nore details

@ hrows org. apache. kaf ka. cormon. errors. Aut hori zati onException if not authorized to the topic or to the
configured groupld. See the exception for nore details

@ hrows org. apache. kaf ka. cormon. Kaf kaExcepti on for any other unrecoverable errors

@ hrows org. apache. kaf ka. common. errors. Ti nreout Exception if tine spent blocking exceeds the { @ode

}
set AndMet adat a conmi tted(TopicPartition partition, final Duration tineout)’

| **



* Commit the specified offsets for the specified list of topics and partitions.

* o<p>

* This commits offsets to Kafka. The offsets committed using this APl will be used on the first fetch
after every

* rebal ance and al so on startup. As such, if you need to store offsets in anything other than Kafka, this

API
* should not be used. The committed of fset should be the next nessage your application will consune,
* j.e. lastProcessedMessageCffset + 1.
* o <p>
* This is a synchronous conmmits and will block until either the conmt succeeds or an unrecoverable error
is
* encountered (in which case it is thrown to the caller).
* <p>
* Note that asynchronous offset commts sent previously with the {@ink #comm t Async(Cf f set Commi t Cal | back) }
* (or simlar) are guaranteed to have their callbacks invoked prior to conpletion of this nethod.
*
* @aramoffsets A map of offsets by partition with associated netadata
+ * @aramtinmeout Maxi mumduration to block

* @hrows org.apache. kaf ka. cli ents. consuner. Conmi t Fai | edException if the commt failed and cannot be
retried.

* This can only occur if you are using autonatic group nanagement with {@ink #subscribe
(Collection)},

* or if there is an active group with the sane groupld which is using group managenent.

* @hrows org.apache. kaf ka. cormon. errors. WakeupException if {@ink #wakeup()} is called before or while
this

* function is called

* @hrows org.apache. kaf ka. cormon. errors. I nterrupt Exception if the calling thread is interrupted before or
while

* this function is called
+. * @hrows org.apache. kaf ka. cormon. errors. Ti mreout Exception if tine spent blocking exceeds the { @ode
tineout}

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the
exception for nore details

* @hrows org.apache. kaf ka. common. errors. Aut hori zati onException if not authorized to the topic or to the

* configured groupld. See the exception for nore details

* @hrows java.lang. |1l egal Argument Exception if the conmitted offset is negative

* @hrows org.apache. kaf ka. cormon. Kaf kabException for any other unrecoverable errors (e.g. if offset
net adat a

* is too large or if the topic does not exist).

*/

voi d conm t Sync(final Map<TopicPartition, OfsetAndMetadata> offsets, final Duration tineout);

* Commit offsets returned on the last {@ink #poll (Duration) poll ()} for all the subscribed Iist of topics
and

* partitions.

* <p>

* This commits offsets only to Kafka. The offsets committed using this APl will be used on the first fetch
after

* every rebal ance and also on startup. As such, if you need to store offsets in anything other than Kafka,
this API

* should not be used.

* o<p>

* This is a synchronous commits and will block until either the conmt succeeds, an unrecoverable error is

* encountered (in which case it is thrown to the caller), or the passed tineout expires.

* o<p>

* Note that asynchronous offset commits sent previously with the {@ink #comm t Async(Of f set Commi t Cal | back) }

* (or simlar) are guaranteed to have their callbacks invoked prior to conpletion of this nethod.

+ * @aramtinmeout Maxinum duration to bl ock

* @hrows org.apache. kaf ka. cli ents. consuner. Conmi t Fai | edException if the commt failed and cannot be
retried.

* This can only occur if you are using autonatic group nanagenent with {@ink #subscribe
(Collection)},
* or if there is an active group with the sane groupld which is using group managenent.

* @hrows org.apache. kaf ka. cormon. errors. WakeupException if {@ink #wakeup()} is called before or while
this
* function is called



* @hrows org.apache. kaf ka. cormon. errors. I nterrupt Exception if the calling thread is interrupted before or
whi | e

* this function is called

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the
exception for nore details

* @hrows org.apache. kaf ka. conmon. errors. Aut hori zati onException if not authorized to the topic or to the

* configured groupld. See the exception for nore details

* @hrows org.apache. kaf ka. cormon. Kaf kaException for any other unrecoverable errors (e.g. if offset
net adat a

* is too large or if the topic does not exist).
+ * @hrows org.apache. kaf ka. common. errors. Ti meout Exception if the timeout expires before successful
conpl etion

* of the offset commit

*/

@verride

public void conmmtSync(Duration tineout);

Currently, commi t Sync does not accept a user-provided timeout, but by default, will block indefinitely by setting wait time to Long. MAX_VALUE. To
accomadate for a potential hanging block,

the new Kaf kaConsumner #commi t Sync will accept user-specified timeout.

Consurner #pol |

The pre-existing variant pol | (1 ong ti meout) would block indefinitely for metadata updates if they were needed, then it would issue a fetch and poll for
ti meout ms for new records. The initial indefinite metadata block caused applications to become stuck when the brokers became unavailable. The
existence of the timeout parameter made the indefinite block especially unintuitive.

We will add a new method pol | (Dur ation ti meout) with the semantics:

1. iff a metadata update is needed:
a. send (asynchronous) metadata requests
b. poll for metadata responses (counts against timeout)
® if no response within timeout, return an empty collection immediately
2. if there is fetch data available, return it immediately
3. if there is no fetch request in flight, send fetch requests
4. poll for fetch responses (counts against timeout)
® if no response within timeout, return an empty collection (leaving async fetch request for the next poll)
® if we get a response, return the response

We will deprecate the original method, pol | (1 ong ti meout ), and we will not change its semantics, so it remains:

1. iff a metadata update is needed:
a. send (asynchronous) metadata requests
b. poll for metadata responses indefinitely until we get it
2. if there is fetch data available, return it immediately
3. if there is no fetch request in flight, send fetch requests
4. poll for fetch responses (counts against timeout)
® if no response within timeout, return an empty collection (leaving async fetch request for the next poll)
® if we get a response, return the response

One notable usage is prohibited by the new pol | : previously, you could call pol | (0) to block for metadata updates, for example to initialize the client,
supposedly without fetching records. Note, though, that this behavior is not according to any contract, and there is no guarantee that pol | (0) won't return
records the first time it's called. Therefore, it has always been unsafe to ignore the response.

Note that poll() doesn't throw a Ti meout Except i on because its async semantics are well defined. l.e., it is well defined to return an empty response
when there's no data available, and it's designed to be called repeatedly to check for data (hence the name).



/**

* Fetch data for the topics or partitions specified using one of the subscribe/assign APIs. It is an error to
not have

* subscribed to any topics or partitions before polling for data.

* o<p>

* On each poll, consurmer will try to use the |last consuned offset as the starting offset and fetch
sequentially. The | ast

* consuned of fset can be nanually set through {@ink #seek(TopicPartition, long)} or automatically set as the
ast conmitted

* offset for the subscribed Iist of partitions

* @aramtinmeout The maxinmumtinme to block and poll for metadata updates or data.
* @eturn map of topic to records since the last fetch for the subscribed list of topics and partitions

* @hrows org.apache. kaf ka. cli ents. consuner. | nval i dOf f set Exception if the offset for a partition or set of
* partitions is undefined or out of range and no offset reset policy has been configured

* @hrows org.apache. kaf ka. cormon. errors. WakeupException if {@ink #wakeup()} is called before or while this
* function is called

* @hrows org.apache. kaf ka. conmon. errors. Interrupt Exception if the calling thread is interrupted before or
whil e

* this function is called

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the exception
for nore details

* @hrows org.apache. kaf ka. cormon. errors. Aut hori zati onException if caller |acks Read access to any of the
subscri bed

* topics or to the configured groupld. See the exception for nore details

* @hrows org.apache. kaf ka. cormon. Kaf kaException for any other unrecoverable errors (e.g. invalid groupld or

* session tinmeout, errors deserializing key/value pairs, or any new error cases in future versions)

* @hrows java.lang.!llegal Argunment Exception if the tinmeout value is negative

* @hrows java.lang.!llegal StateException if the consuner is not subscribed to any topics or manual |y assigned
any

* partitions to consune from

*/

publ i c Consuner Records<K, V> poll (final Duration tineout)

We will mark the existing pol | () method as deprecated.

Consuner #partiti onsFor

* Get netadata about the partitions for a given topic. This method will issue a renote call to the server if it
* does not already have any mnetadata about the given topic.

* @aramtopic The topic to get partition netadata for
* @aramtineout The maxinmumtime this operation will block

* @eturn The |ist of partitions

* @hrows org.apache. kaf ka. cormon. errors. Ti meout Exception if time spent bl ocking exceeds the {@ode tineout}

* @hrows org.apache. kaf ka. cormon. errors. WakeupException if {@ink #wakeup()} is called before or while this

* function is called

* @hrows org.apache. kaf ka. coomon. errors. Interrupt Exception if the calling thread is interrupted before or
while

* this function is called

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the exception
for nore details

* @hrows org.apache. kaf ka. cormon. errors. Aut hori zati onException if not authorized to the specified topic. See
the exception for nore details

* @hrows org.apache. kaf ka. common. errors. Ti meout Exception if the topic netadata could not be fetched before

* expiration of the configured request tineout
* @hrows org.apache. kaf ka. cormon. Kaf kaExcepti on for any other unrecoverable errors
*

/

Li st<Partitionlnfo> partitionsFor(String topic, Duration tineout);



Consuner #l i st Topi cs

| **
*

*

*
whi
*
*
*

*

*/

Map<Stri ng,

Get netadata about partitions for all topics that the user is authorized to view. This nmethod will issue a
renote call to the server.

@aram timeout The maxinmumtime this operation will block

@eturn
@ hr ows
@ hr ows

@ hr ows
le

@ hr ows

@ hr ows

The map of topics and its partitions

or g. apache. kaf ka. conmon. errors. Ti meout Exception if tine spent bl ocking exceeds the { @ode tineout}

or g. apache. kaf ka. cormon. error s. WakeupException if {@ink #wakeup()} is called before or while this
function is called

or g. apache. kaf ka. common. errors. I nterrupt Exception if the calling thread is interrupted before or

this function is called

or g. apache. kaf ka. conmon. errors. Ti neout Exception if the topic netadata could not be fetched before
expiration of the configured request tineout

or g. apache. kaf ka. conmon. Kaf kaExcepti on for any other unrecoverable errors

Li st<Partitionlnfo>> |istTopics(Duration timeout)

Consuner #of f set sFor Ti nes

| **

* Look up the offsets for the given partitions by tinestanp. The returned offset for each partition is the
* earliest offset whose tinestanp is greater than or equal to the given tinestanp in the corresponding

par

for

*
*
*
*

*

*/

tition.

This is a blocking call. The consuner does not have to be assigned the partitions.

If the nmessage format version in a partition is before 0.10.0, i.e. the nessages do not have tinestanps, null
will be returned for that partition.

@ar am ti mest anpsToSearch the mapping frompartition to the tinestanp to | ook up.
@aram timeout The maximumtime this operation will block

@eturn

@ hr ows
@ hr ows

a mapping frompartition to the timestanp and offset of the first nessage with tinestanp greater

than or equal to the target tinestanp. {@ode null} will be returned for the partition if there is no
such nessage.

or g. apache. kaf ka. conmon. errors. Ti meout Exception if tine spent bl ocking exceeds the { @ode tineout}
or g. apache. kaf ka. conmon. errors. Aut henti cati onException if authentication fails. See the exception

nore details
* @hrows org.apache. kaf ka. conmon. errors. Aut hori zati onException if not authorized to the topic(s). See the
exception for nore details

@ hr ows
@ hr ows

@ hr ows

11l egal Argunent Exception if the target tinmestanp is negative

or g. apache. kaf ka. conmon. errors. Ti neout Exception if the offset metadata could not be fetched before
expiration of the configured {@ode request.tinmeout.ns}

or g. apache. kaf ka. conmon. errors. Unsuppor t edVer si onException if the broker does not support |ooking up
the offsets by tinestanp

Map<Topi cPartition, O fsetAndTi nestanp> of f set sFor Ti mes( Map<Topi cPartition, Long> tinestanpsToSearch, Duration
tineout)

Consuner #begi nni ngx f set s



* Get the first offset for the given partitions.
* <p>
* This nethod does not change the current consuner position of the partitions.

* @ee #seekToBegi nni ng(Col | ection)

* @arampartitions the partitions to get the earliest offsets.
* @aramtineout The maxinumtime this operation will block

* @eturn The earliest available offsets for the given partitions

* @hrows org.apache. kaf ka. cormon. errors. Ti meout Exception if time spent bl ocking exceeds the {@ode tineout}

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the exception
for nore details

* @hrows org.apache. kaf ka. cormon. errors. Aut hori zati onException if not authorized to the topic(s). See the
exception for nore details

* @hrows org.apache. kaf ka. conmon. errors. Ti meout Exception if the offsets could not be fetched before

* expiration of the configured {@ode request.tinmeout.ns}

*/
Map<Topi cPartition, Long> begi nni ngxfsets(Collection<TopicPartition> partitions, Duration tineout)

Consumer#endOffsets

/**

* Get the end offsets for the given partitions. In the default {@ode read_uncommtted} isolation level, the
end

* offset is the high waternark (that is, the offset of the |ast successfully replicated nessage plus one). For
* {@ode read_comitted} consuners, the end offset is the last stable offset (LSO, which is the m ni num of

* the high watermark and the smallest offset of any open transaction. Finally, if the partition has never been
*witten to, the end offset is 0.

* <p>
* This nethod does not change the current consuner position of the partitions.

* @ee #seekToEnd(Col |l ection)

* @arampartitions the partitions to get the end offsets.
* @aramtineout The maxinumtime this operation will block

* @eturn The end offsets for the given partitions.

* @hrows org.apache. kaf ka. cormon. errors. Ti meout Exception if time spent blocking exceeds the {@ode tineout}

* @hrows org.apache. kaf ka. cormon. errors. Aut henti cati onException if authentication fails. See the exception
for nore details

* @hrows org.apache. kaf ka. cormon. errors. Aut hori zati onException if not authorized to the topic(s). See the
exception for nore details

* @hrows org.apache. kaf ka. common. errors. Ti meout Exception if the offsets could not be fetched before

* expiration of the configured {@ode request.tinmeout.ns}

*/
Map<Topi cPartition, Long> endOf fsets(Collection<TopicPartition> partitions, Duration tineout)

Consumer#close

Notes:

® cl ose() already is a variant with no parameters and applies a default from config. However, this variant will not be deprecated because it called
by the Cl oseabl e interface.

® close(long, TineUnit) also exists as a variant. This one will be deprecated in favor of the new cl ose( Dur at i on) variant for consistency

® The existing semantics of close is not to throw a Ti neout Except i on. Instead, after waiting for the timeout, it forces itself closed.



* Tries to close the consuner cleanly within the specified tineout. This nethod waits up to

* {@ode tinmeout} for the consuner to conplete pending conmits and | eave the group.

* |f auto-commit is enabled, this will commit the current offsets if possible within the

* timeout. If the consumer is unable to conplete offset conmts and gracefully |eave the group

* before the tineout expires, the consuner is force closed. Note that {@ink #wakeup()} cannot be
* used to interrupt close.

* @aramtineout The maximumtime to wait for consumer to close gracefully. The val ue nust be
* non- negative. Specifying a tineout of zero neans do not wait for pending requests to conplete.

* @hrows |1 egal Argunent Exception If the {@ode timeout} is negative.

* @hrows InterruptException If the thread is interrupted before or while this function is called
* @hrows org.apache. kaf ka. cormon. Kaf kaExcepti on for any other error during close

*/

public void close(Duration tinmeout)

Compatibility, Deprecation, and Migration Plan

Since old methods will not be modified, preexisting data frameworks will not be affected. However, some of these methods will be deprecated in favor of
methods which are bound by a specific time limit.

The introduction of default.api.timeout.ms causes a slight change of behavior since some of the blocking APIs will now raise TimeoutException rather than

their current blocking behavior. The change is compatible with the current API since TimeoutException is a KafkaException. Additionally, since
TimeoutException is retriable, any existing retry logic will work as expected.

Feasible and Rejected Alternatives

Please see KIP-288 for other rejected alternatives.

In discussion, many have raised the idea of using a new config to set timeout time for methods which is being changed in this KIP. It would not be
recommended to use one config for all methods. However, we could use it for similar methods (e.g. methods which call updat eFet chPosi ti ons() will
block using one timeout configured by the user). In this manner, we could incorporate both the config and the added timeout parameter into the code.

Another alternative of interest is that we should add a new overload for pol | (), particularily since the changing the old method can become unwieldly
between different Kafka versions. To elaborate, a Timeout parameter will also be added to the poll() overload.

One alternative was to add a t i meout parameter to the current posi ti on() and other methods. However, the changes made by the user will be much
more extensive then basing the time constraint on r equest Ti meout Ms because the method signature has been changed.

Another possibility was the usage of r equest Ti neout Ms to bound posi ti on(), however, this would make the method highly inflexible, especially since
request Ti meout Ms is already being used by multiple other methods


https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-288%3A+%5BDISCARDED%5D+Consumer.poll%28%29+timeout+semantic+change+and+new+waitForAssignment+method

	KIP-266: Fix consumer indefinite blocking behavior

