KIP-285: Connect Rest Extension Plugin

Status
Motivation
Public Interfaces
Proposed Changes
© Plugin Interface

O Rest Extension Integration with Connect
© Packaging
© Example
© Reference Implementation
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Status

Current state: Accepted

Discussion thread: here

JIRA: .& Unable to render Jira issues macro, execution

error.

PR : https://github.com/apache/kafka/pull/4931

Released: 2.0.0

Motivation

Connect Framework offers REST API that is used to mange the lifecycle of the connector. Its imperative in most enterprises to secure the API and also
add authorization to the end points. We could add the ability for authentication and authorization in the framework. But the security requirements are so
broad that it's not practical to support all of them in the framework. Hence we must provide ability for users to plug resources that help achieve the
required capabilities.

While security is prime use cases for this extension. Its not limited to that. Some of the common use cases are

® Build a custom Authentication filter

® Build a custom Authorization filter

® Complex extensions can even provide filters that rewrite/validate the connector requests to enforce additional constraints on the connector
configurations

Public Interfaces

Developers would be required to implement only the ConnectRestExtension interface to provide an extension. ConnectRestExtension provides an
implementation of ConnectRestExtensionContext whose configurable() provides an implementation of javax.ws.rs.core.Configurable. Using this
developers can register new JAX-RS resources like filter, new end points, etc

http://mail-archives.apache.org/mod_mbox/kafka-dev/201804.mbox/%3CCA%2BYfQwhv-vUANEE%3Dz29WmyNADY-Ls_XC9U_b%3DgjJ2SSog_AvTw%40mail.gmail.com%3E
https://github.com/apache/kafka/pull/4931
http://javax.ws

package org. apache. kaf ka. connect . rest;
public interface Connect Rest Ext ensi on extends Configurable, Versioned, Cl oseable {
/**
* Connect Rest Ext ensi on i npl ementations regi ster custom JAX-RS resources via the {@ink
* #regi ster(Connect Rest Ext ensi onContext)} nmethod. Framework will invoke this nethod after
* registering the default Connect resources. |f the inplenmentations attenpt to re-register any
* of the Connect Resources, it will be be ignored and will be | ogged.

* @aram rest Pl ugi nCont ext The context provides access to JAX-RS {@ink javax.ws.rs.core. Configurabl e}

* and {@ink Connectd usterState}. The custom JAX-RS resources can be
* registered via the {@ink Connect Rest Ext ensi onCont ext #confi gurabl e()}
*/

voi d regi ster(Connect Rest Ext ensi onCont ext rest Pl ugi nCont ext);

As mentioned above, even though the developers are required to only implement the ConnectRestExtension, they will be using several new public
interfaces that are implemented by the framework.

Versioned

A new Versioned interface that will be used by all the plugins/components that support version. The Connector interface would be modified to extend this
new interface instead of exposing the version() method itself.

package org. apache. kaf ka. connect . conponent s;
public interface Versioned {
/**
* Get the version of this conponent.
*
* @eturn the version, formatted as a String
*/
String version();

ConnectRestExtensionContext
This is a request Context interface that composes and provides access to

® Configurable - register JAX-RS resources
® clusterState - A new interface that helps provide some cluster state information

package org. apache. kaf ka. connect . rest;
interface Connect Rest Ext ensi onCont ext {
/**
*
* @eturn return a inplenentation of {@ink javax.ws.rs.core.Configurable} that be used ot
* regi ster JAX-RS resources
*
/
Conf i gur abl e<? ext ends Confi gurabl e> configurable();
/**
* Provides neta data about connector's and its health
* @eturn instance of {@ink Connectd usterState}
*
/
Connect Cl usterState clusterState();

ConnectClusterState

This interface provides methods for the extension to get the connector states and list of running connectors.

package org. apache. kaf ka. connect . heal t h;
interface Connectd uster State{

/**

* Get a list of connectors currently running in this cluster. This is a full list of connectors in the

cluster gathered
* fromthe current configuration.
*/
Col | ection<String> connectors();

/**

* Lookup the current status of a connector.

* @aram connNane nanme of the connector

*/

Connect or Heal th connect orHeal th(String connNane) ;

}

package org. apache. kaf ka. connect . heal t h;
public class ConnectorHealth {

private final String nane;

private final ConnectorState connector;
private final Map<Integer, TaskState> tasks;
private final ConnectorType type;

publ i c ConnectorHeal th(String nane,

Connect or St at e connector,
Map<I nt eger, TaskState> tasks,
Connect or Type type) {

thi s. nane = nane;

t hi s. connector = connector;

this.tasks = tasks;

this.type = type,

public String name() {
return nane;

}

public ConnectorState connectorState() {
return connector;

}

public Map<lnteger, TaskState> tasksState() {
return tasks;

}

publ i c ConnectorType type() {
return type;

}

public abstract class AbstractState {

private final String state;
private final String trace;
private final String workerld;

public AbstractState(String state, String workerld, String trace) {
this.state = state;
this.workerld = workerld;
this.trace = trace;

}

public String state() {
return state;

}

public String workerld() {
return workerld;

}

public String trace() {
return trace;

}

public class ConnectorState extends AbstractState {

public ConnectorState(String state, String worker, String nsg) {
super (state, worker, nsg);
}
}

public class TaskState extends AbstractState inplenments Conparabl e<TaskState> {
private final int taskld;

public TaskState(int taskld, String state, String workerld, String nmsg) {
super (state, workerld, nsg);
this.taskld = taskld;

}

public int taskld() {
return taskld;

}

@verride
public int conpareTo(TaskState that) {

return Integer.conpare(this.taskld, that.taskld);
}

@verride
public bool ean equal s(Object o) {
if (o ==this) {
return true;
}
if (!(o instanceof TaskState)) {
return false;

}
TaskState other = (TaskState) o;
return conpareTo(other) == 0;

}

@verride

public int hashCode() {
return Cbjects. hash(taskld);
}

This also introduces a new configuration that rest.extension.classes that allows to configure a comma separated list of Rest extension implementations.

Proposed Changes

Plugin Interface

Users will be able to create a plugin by implementing the ConnectRestExtension interface, which has a single method that takes a ConnectRestExtensi
onContext instance as the only parameter. This allows us to change the interface easily in future to add new parameters. Connect runtime would also
provide a default implementation for the interface ConnectRestExtensionContext. One or more of the ConnectRestExtension implementation can be
configured via the configuration rest.extension.classes as a comma separated list of class names.

Implementations would use the j avax. ws. rs. core. Confi gur abl e to register one or more JAX-RS resources and get access to the Worker's Configs
through the (Map<sString, ?> configs) method in the ConnectRestExtension implementation(through org.apache.kafka.common.Configurable)

package org. apache. kaf ka. connect. runti ne. rest;

cl ass Connect Rest Ext ensi onCont ext | npl i npl enents Connect Rest Ext ensi onCont ext {
private final Configurable configurable;
private final ConnectC usterState clusterState;

Connect Rest Ext ensi onCont ext (Confi gurabl e configurable, ConnectC usterState clusterState){
this.configurable = configurable;
this.clusterState = clusterState;

}

public Configurable configurable(){
return this.configurable;

}

public ConnectClusterState clusterState(){
return this.clusterState;

}

We will be introducing another new public APl ConnectClusterState which will at present provide some of the read only methods from the Herder. The
change would also include a default implementation ConnectClusterStatelmpl in the connect runtime that will delegate to the underlying Herder. This will
be useful when you want to add new resources like healthcheck, monitoring, etc.

package org. apache. kaf ka. connect. runti ne. heal t h;
cl ass ConnectC usterStatel npl inplenments Connect Cl uster St at ef
private final Herder herder;

publ i c Connect Cl uster Statel npl (Herder herder){
this. herder = herder;

}

@verride
Col | ection<String> connectors(){
// del egate to herder

}

@verride
Connect or Heal th connectorHeal t h(String connNane) ; {
// del egate to herder

}

Rest Extension Integration with Connect

The plugin's would be registered in the RestServer.start(Herder herder) method after registering the default Connect resources. Connect Runtime would
provide an implementation of Configurable interface that would do the following.

® Constructed with the ResourceConfig available in the RestServer and the configure(Map<String, ?> configs) is invoked on the implementation

® Will check if resource is already registered. If not, it would delegate to ResourceConfig. If already registered would log a warning message.

® For non-register methods would just delegate to the ResourceConfig instance. This helps alleviate any issues that could arise if Extension
accidentally reregister the connect resources.

® The close() for the plugins would be invoked as part of the stop() in the RestServer. The implementation would not be invoked after this.

cl ass Connect Rest Confi gurabl e i npl enents Confi gurabl e{
Resour ceConfi g resourceConfig;

publ i c Connect Rest Confi gur abl e(ResourceConfi g resourceConfig) {
this.resourceConfig = resourceConfig;

}

/1inpl erent nethods and del egate to resourceConfig
}
Packaging

The new extension class and its dependencies would need to be as part of the plugin path. Hence ConnectRestExtension would be defined as a new
plugin to be loaded by the PluginClassLoader.The plugin would be looked up based on Java's Service Provider API instead of the Reflections scan that is
used for other plugins. This will help in terms of not adding class loader cost that is associated in scanning the classes today for other plugins. Hence the
implementation must provide a "META-INF/services/org.apache.kafka.connect.rest.ConnectRestExtension™ as part of the jar file containing the fully
qualified implementation class .

Example

Consider the following example that defines a single plugin to add an authenticating filter and a health check resource.

class Exanpl eConnect Rest Ext ensi on i npl enents Connect Rest Ext ensi on{
private Map<String, ?> configs;

@verride
public void register(Connect Rest Ext ensi onCont ext rest Pl ugi nCont ext) {
rest Pl ugi nCont ext . confi gurabl e().regi ster(new Aut henticationFilter(configs));
rest Pl ugi nCont ext . confi gurabl e().regi ster(new Heal t hCheckResour ce(configs, restPluginContext.
clusterState()));

}

@verride
public void close() throws | COException {

}

@verride
public void configure(Mup<String, ?> configs) {
this.configs = configs;

}

@verride
public String version() {
return Appl nfoParser. getVersion();
}
}

class AuthenticationFilter inplenments ContainerRequestFilter {
private final String authenticati onReal m
public AuthenticationFilter(Mp<String, ?> configs){
//set up filter
aut henti cati onReal m = confi gs. get ("exanpl e. aut hentication.real n');

}

@verride
public void filter(ContainerRequest Context requestContext) {
//authentication |ogic

}
}

@rat h("/connect")
cl ass Heal t hCheckResource {

publ i c Heal t hCheckResource(Map<String, ?> configs, ConnectC usterState clusterState){
/linitialize resource

}

@at h("/heal th")

public void heal thcheck(){
/I check herder health

}

For the RestExtension implementation to be found, the JAR should include the classes required by the implementation (excluding any Connect API or JAX-
RS JARSs) and should include a META-INF/services/org.apache.kafka.connect.rest.ConnectRestExtension file that contains the fully-qualified names of the
extension implementation class(es) found within the JAR. This is the standard Java Service Loader API mechanism.

META-INF/services/org.apache.kafka.connect.rest.ConnectRestException
com.example.ExampleConnectRestExtension
The above illustrated plugin can then be configured in the worker's configuration as below

worker.properties

rest. extension. cl asses=com exanpl e. Exanpl eConnect Pl ugi n
exanpl e. aut henti cati on. r eal m=Exanpl eAut henti cati on

Reference Implementation

The KIP proposes to include a reference implementation that allows users to authenticate incoming Basic Auth headers against the configured
JAASLoginModule.

Compatibility, Deprecation, and Migration Plan

® This is entirely new functionality so there are no compatibility, deprecation, or migration concerns.

Rejected Alternatives

1. Creating configs specific to the plugin and just passing them to the plugin based on a prefix. It was considered much easier to make the complete
WorkerConfig. Also, in many cases the plugins would need to know just more than their configs to implement their actions.

2. Passing the Herder to the plugin was considered but it was rejected since the Herder API is not public and we don't want to expose the complete
Herder capabilities to the plugin.

3. Providing ability to just add Filters insteda of any kind of Jersey resource was considered but it was rejected because it was too limiting in its
capability that one canot add new resource end points or add a jersey provider.

4. Having the Connect REST plugin as part of class path is rejected for the same reason why we have custom interfaces like Converters and
Connectors as plugin and loaded via plugin path.

	KIP-285: Connect Rest Extension Plugin

