KIP-NEXT: Get rid of unnecessary read lock

Status

Motivation

Public Interfaces

Proposed Changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

This page is meant as a template for writing a KIP. To create a KIP choose Tools->Copy on this page and modify with your content and replace the
heading with the next KIP number and a description of your issue. Replace anything in italics with your own description.

Status

Current state:Under Discussion

Discussion thread: here

JIRA: SensorAccess.getOrCreate should be more efficient

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

.Improve Kafka performance in request handling and make the source code cleaner.

Public Interfaces

There's no public interfaces to be defined. The change proposed here is to remove a read lock which is completely unnecessary. The read lock is called
for each request (at least) from producer, which is really expensive.

Proposed Changes

The getOrCreate of SensorAccess class under this folder: core\src\main\scala\kafka\server is using a read like this:
lock.readLock().lock()

The lock is used to prevent race condition: when a new sensor is created by a writer thread, and the "sensor" variable is not null more, but the initialization
of the new sensor object is not finished, if at this moment another thread may gets the sensor object and use it before the sensor initialization is finished.

But this read lock can be avoided by firstly assigning the new sensor to a temporary variable say "tmp", and then initialized tmp, finally assign temp to the
"sensor" variable. By doing this, we can get rid of the read lock.

Below code and screen shows the code change:

codechange.zip

https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals
http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-6722

2 -

28 % The later argunents are passed as methods as they are only called when the sensor is instantiated.
29 */

30 class Sensorficcess

3

def getOrCreate(sensorNane: String, expirationTin

Long, lock: ReentrantReadiiriteLock, metrics: MHetrics, metricNane: () => MetricName, confi

() > HetricConfig, measure: () => MeasurableStat): Sensor = {

Var sensor: Sensor = metrics.getsensor(sensorNane)
50
51 /% 1f the sensor is null, try to create it else return the existing sensor
52 The sensor can be nuli, hence the null checks
53 s
51 iF (sensor == null) ¢
55 /% Acquire a urite lock because the sensor may not have been created and we only vant one thread to create it.
56 = Hote that multiple threads nay acquire the write lock if they all see a null sensor initially
57 « In this case, the writer checks the sensor after acquiring the lock again.
58 x This is safe from Double Checked Locking because the references are read
(| 59 « after acquiring read locks and hence they cannot see a partially published reference
50 -
61 Tock.uriteLock() lock()
52 tr
63 7/ Set the var for both sensors in case another thread has won the race to acquire the urite lock. This will
61 77 ensure that we initialise “ClientSensors® with non-null parameters.
65 Sensor = netrics.getSensor (sensorane)
56 if (sensor ==
s SorNane, config(), expirationti
57 var- <. sensor (sensorNane, confi0(), expirationtine)
: °0)
©8) | > enpSensor -add (netrichane(), neasure())
> sensor = tempSensor
69)
|| 7 y Finally ¢
7 Tock.writeLock() .unlock()
7 B
7 >
7 sensor
7
i s

Compatibility, Deprecation, and Migration Plan

N/A

Rejected Alternatives

If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

	KIP-NEXT: Get rid of unnecessary read lock

