KIP-342: Add support for Custom SASL extensions in
OAuthBearer authentication

Status
Motivation
Public Interfaces
Proposed Changes
o Client Path
o Server Path - "OAuthBearerServer
® Example
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Status

Current state: "Accepted”
Discussion thread: here
JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Kafka currently supports non-configurable SASL extensions in its SCRAM authentication protocol for delegation token validation.

It would be useful to provide configurable SASL extensions for the OAuthBearer authentication mechanism as well, such that clients could attach arbitrary
data for the principal authenticating into Kafka. Even though the JWT token standard supports customizable fields (in the form of claims), there are use
cases where the client is unable to add additional ones (e.g: Kafka client receives a signed JWT token from a third-party).

This way, a custom principal can hold information derived from the authentication mechanism, which could prove useful for better tracing and
troubleshooting, for example. This can be done in a way which allows for easier extendability in future SASL mechanisms.

It is worth noting that these extensions would lack a digital signature and therefore should not be used for critical use-cases where security is a concern.

Public Interfaces

New JAAS config option for default, unsecured bearer tokens - “unsecuredLoginExtension_<extensionname>" (as shown in the "Example" paragraph).
The name "auth" is not supported as a custom extension name with any SASL/IOAUTHBEARER mechanism, including the unsecured one, since it is
reserved by the specification for what is normally sent in the HTTP Authorization header. An attempt to use it will result in an exception on the client. There
are also additional regex validations for extension name and values to ensure they conform to the SASL/OAUTHBEARER standard (specifically, https://tool
s.ietf.org/html/rfc7628#section-3.1)

The server can further validate the extensions via its pluggable callback handler.

"OAuthBearerExtensionsValidatorCallback™ - callback for OAuth extension validation, providing access to the token

http://mail-archives.apache.org/mod_mbox/kafka-dev/201807.mbox/%3CCANZZNGwzt3CV2xR6QdtkHHcyCNBgB157J1K3yzga6uKHk1yU3w%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-7169
https://tools.ietf.org/html/rfc7628#section-3.1
https://tools.ietf.org/html/rfc7628#section-3.1

package org. apache. kaf ka. conmpn. security. oaut hbearer;

* A {@ode Callback} for use by the {@ode Sasl Server} inplenentation when it
* needs to validate the SASL extensions for the QAUTHBEARER nechani sm
* Cal | back handl ers should use the {@ink #validate(String)}
* method to communicate valid extensions back to the SASL server.
* Cal | back handl ers shoul d use the
* {@ink #error(String, String)} nethod to communicate validation errors back to
* the SASL Server.
* As per RFC-7628 (https://tools.ietf.org/htm/rfc7628#section-3.1), unknown extensions nust be ignored by the
server.
* The cal |l back handl er inplenentation should sinply ignore unknown extensions,
* not calling {@ink #error(String, String)} nor {@ink #validate(String)}.
* Cal | back handl ers should communi cate other problens by raising an { @ode | OException}.
* <p>
* The QAuth bearer token is provided in the callback for better context in extension validation.
* It is very inportant that token validation is done in its own {@ink QAut hBearerVali datorCal | back}
* irregardl ess of provided extensions, as they are inherently insecure.
*/
public class OAut hBear er Ext ensi onsVal i dat or Cal | back i npl enents Call back {
publ i ¢ QAut hBear er Ext ensi onsVal i dat or Cal | back(QAut hBear er Token t oken, Sasl| Ext ensi ons ext ensi ons)

/**

* @eturn {@ink OAuthBearerToken} the QAuth bearer token of the client
*/

publ i ¢ QAut hBear er Token t oken()

| **

* @eturn {@ink Sasl Extensions} consisting of the unvalidated extension nanes and val ues that were sent
by the client

*/

publ i c Sasl Ext ensi ons i nput Ext ensi ons()

| *x*

* @eturn an unnodifiable {@ink Map} consisting of the validated and recogni zed by the server extension
nanes and val ues

*/

public Map<String, String> validatedExtensions()

| **

* @eturn An imutable {@ink Map} consisting of the nanme->error nessages of extensions which failed
val i dation
*/
public Map<String, String> invalidExtensions()

/**
* Validates a specific extension in the original {@ode inputExtensions} map
* @aram extensi onName - the name of the extension which was validated
*/

public void validate(String extensi onNane)

/**

* Set the error value for a specific extension key-value pair if validation has failed

* @aram i nval i dExt ensi onNane

* the mandatory extension name whi ch caused the validation failure
* (@ar am error Message

* error nessage describing why the validation failed

*/

public void error(String invalidExtensi onNane, String errorMessage)

“SaslExtensionsCallback™ - generic callback to hold extensions

SaslExtensionsCallback

package org. apache. kaf ka. conmon. security. aut h;

public class Sasl ExtensionsCal | back inmpl ements Call back {

| **

* Returns a {@ink Sasl Ext ensi ons} consisting of the extension names and values that are sent by the client

to
* the server in the initial client SASL authenticati on nessage.
*
p{.lb| i ¢ Sasl Ext ensi ons extensions()
/**
* Sets the SASL extensions on this call back.
*
pui)l ic void extensions(Sasl Extensions extensions)
}

‘SaslExtensions” - class for holding extensions data

package org. apache. kaf ka. conmon. security. aut h;

/**
* A sinple value object class holding custoni zabl e SASL ext ensi ons
*/
public class Sasl Extensions {
publ i c Sasl Ext ensi ons(Map<String, String> extensi onMap)

/*-k

* Returns an i nmut abl e</ strong> nmap of the extension nanes and their val ues
*/

public Map<String, String> map()

The default "OAuthBearerLoginModule™ and the "OAuthBearerSasIClient” will be changed to request the extensions from their callback handler. For
backwards compatibility it is not necessary for the callback handler to support *SaslExtensionsCallback’. Any UnsupportedCallbackException that is
thrown will be ignored and no extensions will be added.

Proposed Changes

Describe the new thing you want to do in appropriate detail. This may be fairly extensive and have large subsections of its own. Or it may be a few
sentences. Use judgement based on the scope of the change.

Create a new public “SaslExtensions’ class that takes most of the generalizable logic from “ScramExtensions’. "ScramExtensions™ will extend
‘SaslExtensions’

Create a new public "SaslExtensionsCallback™ class which will be similar to “ScramExtensionsCallback’. *ScramExtensionsCallback™ will NOT extend
“SaslExtensionsCallback™ since it will not support the new “SaslExtensions™ class.

Create a new public ‘OAuthBearerExtensionsValidatorCallback™ class.

Client Path

1. Pass "SaslExtensionsCallback’ to the callback handler of "OAuthBearerLoginModule’. The handler should parses the extensions from the JAAS
config (unsecuredLoginExtension_xxx) and populate them in the Subject class.
a. The default "OAuthBearerUnsecuredLoginCallbackHandler™ will be updated with this behavior.
2. Pass "SaslExtensionsCallback’ to the callback handler of ‘“OAuthBearerSaslIClient’. The handler should take the extensions from the Subject and
populate them in the callback
a. The default "OAuthBearerSaslClientCallbackHandler™ will be updated to handle the callback.
3. 'OAuthBearerSaslClient” will then attach the populated extensions (if any) to the first client message

Server Path - ‘'OAuthBearerServer’

1. Parse sent extensions (if any) from the first client message
a. The OAuthBearerServer will use a strict regex which parses only letters for keys and only ASCII characters for values. This ensures the
message conforms to the standard
2. Validate them by passing "OAuthBearerExtensionsValidatorCallback™ to its callback handler

a. If the configured server callback handler does not support "“OAuthBearerExtensionsValidatorCallback’, no extensions will be exposed (as
per RFC 7628 - "Unknown key/value pairs MUST be ignored by the server")
3. Expose them via its "OAuthBearerServer#getNegotiatedProperty()” method.
a. This will allow custom principals to access extensions through the “SaslServer’ instance in “SaslAuthenticationContext#server()”

Example

A user would make use of the changes in this KIP in the following way:

1. Add the extension names to your JAAS configuration in the client

Kaf kad i ent {
or g. apache. kaf ka. conmon. securi ty. oaut hbear er . QAut hBear er Logi nModul e Requi r ed
unsecur edLogi nStri ngd ai m sub="t hePri nci pal Nane"
unsecur edLogi nExt ensi on_t racel d="123"
unsecur edLogi nExt ensi on_| ogLevel ="WARN';

3

2. A custom principal builder can then make use of the new extension

public class CustonPrincipal Builder inplenments KafkaPrincipal Buil der {
@verride
publ i c Kaf kaPri nci pal build(AuthenticationContext context) {
if (context instanceof Sasl AuthenticationContext) {
Sasl Server sasl Server = ((Sasl Aut henticati onContext) context).server();
String traceld = sasl Server. get Negoti at edPropery(“"traceld");
return new CustonPrincipal ("", sasl Server, traceld);

}

t hrow new Exception();

Compatibility, Deprecation, and Migration Plan

® What impact (if any) will there be on existing users?
None. This simply allows for more configuration. We will ignore if legacy callback handlers raise "UnsupportedCallbackException™ on the new
callback classes.
Other mechanisms like SCRAM should remain unaffected

Rejected Alternatives

® Add customizable extensions to every SASL client
© | Not easily implementable, as we depend on a third-party library for PLAIN authentication
© It is possible we implement configurable extensions for SCRAM as well. We would need to simply remove the checks in
‘ScramSaslServer” and then any custom callback handler could populate the extensions

As such, | decided it is best we limit the scope of this KIP while still implementing it in a way which would support future extensions by other SASL
mechanisms

https://tools.ietf.org/html/rfc7628

	KIP-342: Add support for Custom SASL extensions in OAuthBearer authentication

