
KIP-345: Introduce static membership protocol to reduce
consumer rebalances

Status
Motivation
Public Interfaces

Client Side Changes
Stream Side Change

Server Side Changes
Command Line API and Scripts
Client Behavior Changes

Kafka Streams Change
Server Behavior Changes

Join Group Logic Change
Leave Group Logic Change

Command Line API for Membership Management
Upgrade Process
Downgrade Process

Switching from Static Member to Dynamic Member
Non Goal
Rejected Alternatives
Future Works

Status
Current state: Accepted

Discussion thread: here

JIRA:

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201812.mbox/browser

1.

2.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
For stateful applications, one of the biggest performance bottleneck is the state shuffling. In Kafka consumer, there is a concept called "rebalance" which
means that for given M partitions and N consumers in one consumer group, Kafka will try to balance the load between consumers and ideally have each
consumer dealing with M/N partitions. Broker will also adjust the workload dynamically by monitoring consumers' health so that we could kick dead
consumer out of the group, and handling new consumers' join group request. When the service state is heavy, a rebalance of one topic partition from
instance A to B means huge amount of data transfer. If multiple rebalances are triggered, the whole service could take a very long time to recover due to
data transfer.

The idea of this KIP is to reduce number of rebalances by introducing a new concept called . It would help with following example use static membership
cases.

Improve performance of heavy state applications. We have seen that rebalance is the major performance killer with large state application
scaling, due to the time wasted in state shuffling.
Improve general rolling bounce performance. For example MirrorMaker processes take a long time to rolling bounce the entire cluster, because
one process restart will trigger one rebalance. With the change stated, we only need constant number of rebalance (e.g. for leader restart) for the
entire rolling bounce, which will significantly improves the availability of the MirrorMaker pipeline as long as they could restart within the specified
timeout.

Background of Consumer Rebalance
Right now broker handles consumer state in a two-phase protocol. To solely explain consumer rebalance, we only discuss 3 involving states here: RUNNIN

.G, PREPARE_REBALANCE and COMPLETING_REBALANCE

When a consumer joins the group, if this is a new member or the group leader, the broker will move this group state from to RUNNING PREPARE
The reason for triggering rebalance when leader rejoins is because there might be assignment protocol change (f_REBALANCE. or example if

). If an old normal member rejoins the group, the state will not the consumer group is using regex subscription and new matching topics show up
change.
When moved to state, the broker will mark first joined consumer as leader, and wait for all the members to rejoin the PREPARE_REBALANCE
group. Once we collected all current members' join group requests or reached rebalance timeout, we will reply the leader with current member
information and move the state to . All current members are informed to send SyncGroupRequest to get the final COMPLETING_REBALANCE
assignment.
The leader consumer will decide the assignment and send it back to broker. As last step, broker will announce the new assignment by sending
SyncGroupResponse to all the followers. Till now we finished one rebalance and the group generation is incremented by 1.

In the current architecture, during each rebalance consumer groups on broker side will assign new member a randomly generated id called `member.id`
each time. This is to make sure we have unique identity for each group member. During client restart, consumer will send a JoinGroupRequest with a
special UNKNOWN_MEMBER_ID (empty string), and broker will interpret it as a new member. To make this KIP work, we need to change both client side
and server side logic to make sure we persist member identity by persisting a new `group.instance.id` (explained later) throughout restarts, which means
we could reduce number of rebalances since we are able to apply the same assignment based on member identities. The idea is summarized as static

, which in contrary to (the one our system currently uses), is prioritizing "state persistence" over "liveness". membership dynamic membership

We will be introducing two new terms:

Static Membership: the membership protocol where the consumer group will not trigger rebalance unless
A new member joins
A leader rejoins (possibly due to topic assignment change)
An existing member offline time is over session timeout
Broker receives a leave group request containing alistof `group.instance.id`s (details later)

Group instance id: the unique identifier defined by user to distinguish each client instance.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Public Interfaces

New Configurations
Consumer Configs

group.instance.id The unique identifier of the consumer instance provided by end user. If set to non-null string,

the consumer is treated as a static member, otherwise an null id indicates a dynamic member.

Default value: null string.

Client Side Changes

The new `group.instance.id` config will be added to the Join/Sync/Heartbeat/OffsetCommit request/responses.

A list of tuples containing `group.instance.id` and `member.id` will be added to the LeaveGroupRequest, while removing the single `member.id` field.

JoinGroupRequest => GroupId SessionTimeout RebalanceTimeout MemberId GroupInstanceId ProtocolType GroupProtocols
 GroupId => String
 SessionTimeout => int32
 RebalanceTimeout => int32
 MemberId => String
 GroupInstanceId => String // new
 ProtocolType => String
 GroupProtocols => [Protocol MemberMetadata]
 Protocol => String
 MemberMetadata => bytes

JoinGroupResponse => ThrottleTime ErrorCode GenerationId ProtocolName LeaderId MemberId Members
 ThrottleTime => int16
 ErrorCode => int16
 GenerationId => int32
 ProtocolName => String
 LeaderId => String
 MemberId => String
 Members => []JoinGroupResponseMember
 MemberId => String
 GroupInstanceId => String // new
 Metadata => bytes

SyncGroupRequest => GroupId GenerationId MemberId GroupInstanceId Assignments
 GroupId => String
 GenerationId => int32
 MemberId => String
 GroupInstanceId => String // new
 Assignments => []SyncGroupRequestAssignment
 MemberId => String
 Assignment => bytes

SyncGroupResponse => ThrottleTime ErrorCode Assignment
 ThrottleTime => int16
 ErrorCode => int16
 Assignment => bytes

HeartbeatRequest => GroupId GenerationId MemberId GroupInstanceId
 GroupId => String
 GenerationId => int32
 MemberId => String
 GroupInstanceId => String // new

HeartbeatResponse => ThrottleTime ErrorCode Assignment
 ThrottleTime => int16
 ErrorCode => int16

OffsetCommitRequest => GroupId GenerationId MemberId GroupInstanceId Topics
 GroupId => String
 GenerationId => int32
 MemberId => String

 GroupInstanceId => String // new
 Topics => []OffsetCommitRequestTopic
 Name => String
 Partitions => []OffsetCommitRequestPartition
 PartitionIndex
=> int32
 CommittedOffset
=> int64
 CommittedLeaderEpoch
=> int32
 CommitTimestamp
=> int64

CommittedMetadata => String

OffsetCommitResponse => ThrottleTime Topics
 ThrottleTime => int16
 Topics => []OffsetCommitResponseTopic
 Name => String
 Partitions => []OffsetCommitResponsePartition
 PartitionIndex
=> int32
 ErrorCode
=> int16

LeaveGroupRequest => GroupId MemberIdentityList
 GroupId => String
 MemberId => String // removed
 MemberIdentityList => []MemberIdentity // new
 MemberId => String
 GroupInstanceId => String

In the meantime, for better visibility for static members, we are also going to bump DescribeGroup request/response protocol to include `group.instance.id`:

DescribeGroupRequest => ThrottleTime Groups
 ThrottleTime => int16
 Groups => []DescribeGroups
 ErrorCode => int16
 GroupId => String
 GroupState => String
 ProtocolType => String
 ProtocolData => int16
 Members => []DescribedGroupMember
 MemberId
=> String

GroupInstanceId => String // new

ClientId => String

ClientHost => String

MemberMetadata => bytes

MemberAssignment => bytes

Of course, we would bump the Join/Sync/Heartbeat/OffsetCommit/Leave/Describe group request/response versions by 1.

We shall use new JoinGroupResponseMember struct to replace the current subscription struct.

ConsumerCoordinator.java

Map<String, ByteBuffer> allSubscriptions -> List<JoinGroupResponseData.JoinGroupResponseMember>
allSubscriptions;

We shall also add a new public function to `Subscription` class in `PartitionAssignor` to get `group.instance.id`:

PartitionAssignor.java

class Subscription {
 ...
 public Optional<String> groupInstanceId();
}

Similar to the MemberDescription interface (for describe group):

MemberDescription.java

class Subscription {
 ...
 public Optional<String> groupInstanceId();
}

We are also introducing a new error type. Will explain the handling in the following section.

Errors.java

FENCED_INSTANCE_ID(78, "This implies some group.instance.id is already in the consumer group, however the
corresponding member.id was not matching the record on coordinator", FencedInstanceIdException::new)

Stream Side Change

On Kafka Streams side, we plan to expose the list of `group.instance.id` for easy management. This will be done in to expose main consumer KIP-414
client ids which are equivalent to `group.instance.id`s.

Server Side Changes

We shall increase the cap of session timeout to 30 min for relaxing static membership liveness tracking.

KafkaConfig.scala

val GroupMaxSessionTimeoutMs = 1800000 // 30 min for max cap

For fault-tolerance, we also include `group.instance.id` within the member metadata to backup in the __consumer_offsets topic.

GroupMetadataManager

private val MEMBER_METADATA_V3 = new Schema(
 new Field(MEMBER_ID_KEY, STRING),
 new Field(GROUP_INSTANCE_ID_KEY, STRING), // new
 new Field(CLIENT_ID_KEY, STRING),
 new Field(CLIENT_HOST_KEY, STRING),
 new Field(REBALANCE_TIMEOUT_KEY, INT32),
 new Field(SESSION_TIMEOUT_KEY, INT32),
 new Field(SUBSCRIPTION_KEY, BYTES),
 new Field(ASSIGNMENT_KEY, BYTES))

Command Line API and Scripts

We will define one command line API to help us better manage consumer groups:

https://cwiki.apache.org/confluence/display/KAFKA/KIP-414:+Expose+Embedded+ClientIds+in+Kafka+Streams

1.
2.

AdminClient.java

public static MembershipChangeResult removeMemberFromConsumerGroup(String groupId,
RemoveMemberFromConsumerGroupOptions options);

And a separate option class:

RemoveMemberFromGroupOptions.java

public class RemoveMemberFromGroupOptions extends AbstractOptions<RemoveMemberFromGroupOptions> {
 ...
 private List<MemberIdentity> members; // members to be removed
}

which will use the latest LeaveGroupRequest API to inform broker the permanent leaving of a bunch of consumer instances.

Proposed Changes
In short, the proposed feature is enabled if

Latest JoinGroupReq/Res and LeaveGroupReq/Res are supported on both client and broker.
`group.instance.id` is configured with non-null string.

Client Behavior Changes

On client side, we add a new config called `group.instance.id` in ConsumerConfig. On consumer service init, if the `group.instance.id` config is set, we will
put it in the initial join group request to identify itself as a static member. Note that it is user's responsibility to assign unique `group.instance.id` for each
consumers. This could be in service discovery hostname, unique IP address, etc. We also have logic handling duplicate `group.instance.id` in case client
configuration contains duplicates.

For the effectiveness of the KIP, consumer with `group.instance.id` set will not send leave group request when they go offline, which means we shall
only rely on to trigger group rebalance. It is because the proposed rebalance protocol will trigger rebalance with this intermittent in-and-session.timeout
out which is not ideal. In static membership we leverage the consumer group health management to client application such as k8s. Therefore, it is also
advised to make the session timeout large enough so that broker side will not trigger rebalance too frequently due to member come and go. By having a
handful admin tool, user could proactively remove members if session timeout is too long in runtime.

Since the member id is randomly generated by broker, the persistence behavior of static membership will be hindered since the leader doesn't know
 For leader to make better assignment decision, we are attaching `group.instance.id` on response members within the whether this member is new or old.

join group response.

One example is like (Thanks Jason for the idea!):

1.
2.
3.

Suppose we have three consumers in the group with static instance ids: A, B, and C.
Assume a stable group and the respective memberIds are 1, 2, and 3.
So inside group coordinator, we have the following state:
members: {A=1, B=2, C=3}
generation: 5

In fact, the consumer leader of the group is not aware of the instance ids of the members.
So it sees the membership as:
members: {1, 2, 3}.
generation: 5

Now suppose that A does a rolling restart. After restarting,
the coordinator will assign a new memberId to A and let it continue using the previous assignment.
So we now have the following state:
members: {A=4, B=2, C=3}
generation: 5

The leader on the other hand still sees the members in the group as {1, 2, 3}
because it does not know that member A restarted and was given a new memberId.
Suppose that eventually something causes the group to rebalance (e.g. maybe a new topic was created).
When the leader attempts its assignment, it will see the members {2, 3, 4}.

However, appending group.instance.id for join group response provides some benefit
even for the simple partition assignors. Consider, the default range assignor, for example.
Basically it works by sorting the members in the group and
then assigning partition ranges to achieve balance. Suppose we have a partition with 9 partitions.
If the membership were {1, 2, 3}, then the assignment would be the following:
memberId: 1, assignment: {0, 1, 2}
memberId: 2, assignment: {3, 4, 5}
memberId: 3, assignment: {6, 7, 8}

Now when the membership changes to {2, 3, 4}, then all the assignments change as well:
memberId: 2, assignment: {0, 1, 2}
memberId: 3, assignment: {3, 4, 5}
memberId: 4, assignment: {6, 7, 8}

So basically all of the assignments change even though it's the same static members.
However, if we could consider the instanceId as the first sort key,
then we can compute the assignment consistently even across restarts:
instanceId: A, memberId: 1, assignment: {0, 1, 2}
instanceId: B, memberId: 2, assignment: {3, 4, 5}
instanceId: C, memberId: 3, assignment: {6, 7, 8}

And after the restart:
instanceId: A, memberId: 4, assignment: {0, 1, 2}
instanceId: B, memberId: 2, assignment: {3, 4, 5}
instanceId: C, memberId: 3, assignment: {6, 7, 8}

The full benefit of static assignment can only be realized
if the assignor knows the instance ids of the members in the group.
It shouldn't be necessary to do anything fancy with additional metadata.

Kafka Streams Change

KStream uses stream thread as consumer unit. For a stream instance configured with `num.threads` = 16, there would be 16 main consumers running on
a single instance. I Iff user specifies the client id, the stream consumer client id will be like: User client id + "-StreamThread-" + thread id + "-consumer".
user client id is not set, then we will use process id. Our plan is to reuse the consumer client id to define `group.instance.id`, so effectively the KStream
instance will be able to use static membership if end user defines unique `client.id` for stream instances.

For easy operation, we define a new field in StreamsMetadata to expose all the `group.instance.id` given on each stream instance, so that user could

Use REST API to get list of `group.instance.id` on stream instances user wants to remove
Shutdown targeting stream instances
Use command line API to batch remove offline consumers

****Update 04/25****

1.

2.

3.
a.
b.

1.
2.
3.
4.

We are going to let stream user directly configures `group.instance.id`, for the sake of avoiding surprising triggering of static membership. On per thread
basis, we will pass in to make sure each main consumer uses unique instance id within (user configured group.instance.id) + "-thread-" + thread id
one Kafka Stream instance.

Server Behavior Changes

Join Group Logic Change

On server side, broker will keep handling join group request <= v3 as before. The `member.id` generation and assignment is still coordinated by broker,
and broker will maintain an in-memory mapping of {group.instance.id member.id} to track member uniqueness. When receiving a known member's (A.K.A
`group.instance.id` known) rejoin request, broker will return the cached assignment back to the member, without doing any rebalance.

For join group requests under static membership (with `group.instance.id` set),

If the `member.id` uses UNKNOWN_MEMBER_ID,
if `group.instance.id` was found on the static map, we shall generate a member.id to reply to the member rejoin request immediately

 This is to guard against duplicate consumers joining with same `group.instance.id`. when the group is doing stable. We also expect that
after KIP-394, all the join group requests are requiring `member.id` to physically enter the consumer group, so the behavior of static
member is consistent with that proposal.
Following the above definition, it would never be possible for static members to receive a MEMBER_ID_REQUIRED exception, nor
being put in pending member map.
if not found, we shall generate a new member id and add the new key-value pair into static member map.

 member.id (if not unknown) to match the value stored in cache, otherwise reply FENCED_INSTANCE_ID. we are requiring The edge case is that
if we could have members with the same `group.instance.id` (for example mis-configured instances with a valid `member.id` but added a used
`group.instance.id` on runtime). When `group.instance.id` has duplicates, we could refuse join request from members with an outdated `member.

where the client hits this exception in the response, it is id`, since we update the mapping upon each join group request. In an edge case
suggesting that some other consumer takes its spot. The client should immediately fail itself to inform end user that there is a configuration bug
which is generating duplicate consumers with same identity. For first version of this KIP, we just want to have straightforward handling to expose
the error in early stage and reproduce bug cases easily. The exception could be thrown on any client functions depending on Join/Sync/Heartbeat

request/response./OffsetCommit

For join group requests under dynamic membership (without `group.instance.id` set), the handling logic will remain unchanged. If the broker version is not
the latest (< v4), the join group request shall be downgraded to v3.

Leave Group Logic Change

On server side, broker will keep handling leave group request <= v3 as before. We extended the LeaveGroupRequest API with a new tuple list which pairs
`group.instance.id` to `member.id`. The reason to include `member.id` list instead of solely adding a `group.instance.id` list is to move LeaveGroupRequest
towards a more consistent batch API in long term. The processing rules are following:

For static member, `group.instance.id` must be provided. Client could optionally provide a `member.id` when `group.instance.id` is configured non-
null. If `member.id` is provided, the member will only be removed if the `member.id` matches. Otherwise, only the `group.instance.id` is used. The
`member.id` serves as a validation here, which currently will not be used (set to empty string) but potentially useful if we do fully automated
removal process.
For leave group requests under dynamic membership, the member will apply a singleton list of one tuple containing a `member.id` that it is
currently using, and a `group.instance.id` which is set to null string. If this is the case, we shall just remove the given dynamic member the same
way as current leave group logic.
Error cases expected are:

Some instance ids (non-null) are not found, which means the request is not valid ()UNKNOWN_MEMBER_ID
A theoretical case would be that both `member.id` and `group.instance.id` are set to empty string. We shall expose error in the server
log. If the entire batch request is configured with empty strings, UNKNOWN_MEMBER_ID error will be returned.

If the broker version is not the latest (< v4), the leave group request shall be downgraded to v3.

Command Line API for Membership Management

RemoveMemberFromGroup will remove given instances and trigger rebalance immediately, which is mainly used for fast scale down/host replacement
cases (we detect consumer failure faster than the session timeout). This API will first send a FindCoordinatorRequest to locate the correct broker, and
initiate a to target broker hosting that coordinator. LeaveGroupRequest

The coordinator will decide whether to take this metadata change request based on its status on runtime. Error will be returned if

The broker is on an old version (UNSUPPORTED_VERSION)
Consumer group does not exist (INVALID_GROUP_ID)
Operator is not authorized. ()GROUP_AUTHORIZATION_FAILED
LeaveGroupRequest specific error

We need to enforce special access to these APIs for the end user who may not be in administrative role of Kafka Cluster. The solution is to allow a similar
access level to the join group request, so the consumer service owner could easily use this API.

Scale Up

We will not plan to solve the scale up issue holistically within this KIP, since there is a parallel discussion about I cremental Cooperative n Rebalancing, in
which we will encode the "when to rebalance" logic at the application level, instead of at the protocol level.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-394%3A+Require+member.id+for+initial+join+group+request
https://issues.apache.org/jira/browse/KAFKA-6145
https://cwiki.apache.org/confluence/display/KAFKA/Incremental+Cooperative+Rebalancing%3A+Support+and+Policies

1.
2.
3.
4.

1.
a.

2.

For initial scale up, there is a plan to deprecate (delivered in) since we no longer needs it once static group.initial.rebalance.delay.ms KIP-134
membership is delivered and the incremental rebalancing work is done.

Rolling Bounce

Currently broker accepts a config value called which is provided by consumer . The reason we set it to poll interval rebalance timeout max.poll.intervals
is because consumer could only send request within the call of poll() and we want to wait sufficient time for the join group request. When reaching
rebalance timeout, the group will move towards stage and remove unjoined members. This is actually conflicting with the COMPLETING_REBALANCE
design of static membership, because those temporarily unavailable members will potentially reattempt the join group and trigger extra rebalances.
Internally we would optimize this logic by having rebalance timeout only in charge of stopping stage, without removing non-PREPARE_REBALANCE
responsive members immediately. There would not be a full rebalance if the lagging consumer sends a JoinGroupRequest within the session timeout.

So in summary, . We shall remove it from both in-memory static `group.instance.id` map and the member will only be removed due to session timeout
member list.

Scale Down

Currently the scale down is controlled by session timeout, which means if user removes the over-provisioned consumer members it waits until session
timeout to trigger the rebalance. This is not ideal and motivates us to change to be able to include a list of tuples of `group.instance.LeaveGroupRequest
id` and `member.id` such that we could batch remove offline members and trigger rebalance immediately without them.

Fault-tolerance of Static Membership

To make sure we could recover from broker failure/coordinator transition, an in-memory `group.instance.id` map is not enough. We would reuse the
_consumer_offsets topic to store the static member map information. When another broker takes over the leadership, it will load the static mapping info
together.

Compatibility, Deprecation, and Migration Plan

Upgrade Process

The recommended upgrade process is as follow:

Upgrade your broker to include this KIP.
Upgrade your client to include this KIP.
Set `group.instance.id` to be unique for each consumer(or stream instance) and `session.timeout.ms` to a reasonable number if necessary
Rolling bounce the consumer group.

That's it! We believe that the static membership logic is compatible with the current dynamic membership, which means it is allowed to have static
members and dynamic members co-exist within the same consumer group. This assumption could be further verified when we do some modeling of the
protocol and unit test.

Downgrade Process

The downgrade process is also straightforward. End user could just

Unset `group.instance.id`, and change the session timeout to a smaller value if necessary
For KStream user, unset `client.id` should do the work

Do a rolling bounce to switch back to dynamic membership. The dynamic member will be assigned with a new `member.id` which separates from
previous generation.

 The static membership metadata stored on broker will eventually be wiped out when the corresponding `member.id` reaches session timeout.

Switching from Static Member to Dynamic Member

A corner case is that although we don't allow static member to send , the broker could still see such a scenario where the LeaveGroupRequest LeaveGroup
 `member.id` points to an existing static member. The straightforward solution would be removing the member metadata all together including the Request

static member info if the `group.instance.id` was left null corresponding. This approach ensures that downgrade process has no negative impact on the
normal consumer operation, and avoids complicating the server side logic. In the long term, there could be potential use case to require static member to
send LeaveGroupRequest, so we want to avoid changing the handling logic later.

Non Goal

https://cwiki.apache.org/confluence/display/KAFKA/KIP-134%3A+Delay+initial+consumer+group+rebalance

1.
2.

3.

4.

1.

2.

3.

4.

We do have some offline discussions on handling leader rejoin case, where due to the possible topic assignment change (adding or removing topics), we
still need to start a rebalance. However since the broker could also do the subscription monitoring work, we don't actually need to trigger rebalance on
leader side blindly based on its rejoin request. This is a separate topic from 345 and we are tracking the discussion in this

 .

Update 2/12: It turns out that we could cover the leader rejoin case for static membership. When the leader joins with non-empty member.id, it indicates
that the leader is joining with a different purpose than rolling bounce. If leader joins with UNKNOWN_MEMBER_ID, this alone is enough to suggest that it's
doing a restart. We should expect no rebalance in this case.

Rejected Alternatives
In this request, we did an experimental approach to materialize member id(the identity given by broker, equivalent to the `group.instance.id` in pull
proposal) on the instance local disk. This approach could reduce the rebalances as expected, which is the experimental foundation of KIP-345. However,
KIP-345 has a few advantages over it:

It gives users more control of their `group.instance.id`; this would help for debugging purposes.
It is more cloud-/k8s-and-alike-friendly: when we move an instance from one container to another, we can copy the `group.instance.id` to the
config files.
It doe not require the consumer to be able to access another dir on the local disks (think your consumers are deployed on AWS with remote disks
mounted).
By allowing consumers to optionally specifying a `group.instance.id`, this rebalance benefit can be easily migrated to connect and streams as well
which relies on consumers, even in a cloud environment.

Future Works
Beyond static membership we could unblock many stability features. We will initiate separate discussion threads once 345 is done. Examples are:

Pre-registration (proposed by Jason). Client user could provide a list of hard-coded `group.instance.id` so that the server could respond to scaling
operations more intelligently. For example when we scale up the fleet by defining 4 new client instance ids, the server shall wait until all 4 new
members to join the group before kicking out the rebalance, same with scale down.
Add hot standby hosts by defining `target.group.size` (proposed by Mayuresh). We shall keep some idle consumers within the group and when
one of the active member go offline, we shall trigger hot swap due to the fact that current group size is smaller than `target.group.size`. With this
change we might even not need to extend the session timeout since we should easily use the spare consumer to start working.
Add a script called for end user to easily manipulate the consumer group. (proposed by Boyang) kafka-remove-member-from-group.sh ./bin
/kafka- --zookeeper localhost:2181 --broker 1 group-1 --group-instance-ids id_1,id_2 (comma remove-member-from-group.sh --group-id

 separated id list) will immediately trigger a consumer group rebalance by transiting group state to PREPARE_REBALANCE, while removing all
the static members in the given list.
Leverage `group.instance.id` for better generic sticky assignment (proposed by Jason). As we have discussed on the client side changes, for
assignments relying on the natural order of `member.id`s (range/round robin/hash), the group.instance.id is preferred indicator than member.id
because they persist through rolling bounce. Leader will choose to use `group.instance.id` over `member.id` if static membership is enabled.

 Unable to render Jira issues macro, execution

error.

https://github.com/apache/kafka/pull/5176

	KIP-345: Introduce static membership protocol to reduce consumer rebalances

