
KIP-346 - Improve LogCleaner behavior on error

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: "Accepted"

Discussion thread: here

JIRA: KAFKA-7215

: 2.1Released

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Historically, there have been numerous issues where the log compaction has failed for some reason, most commonly bugs in code (

 to name some).

Currently, during log compaction, if the compaction of one log fails unexpectedly the whole `CleanerThread` responsible for compacting and deleting old
logs exits. It is then not automatically restarted at any point. This results in a Kafka broker that runs seemingly fine but does not delete old log segments at
all. This makes the broker a ticking time bomb - it is only a matter of time until the broker runs out of disk space and then all sorts of fatal scenarios ensue.

The situation has been improving - we have a metric showing the time since the last run of the `CleanerThread` (`kafka.log:type=LogCleanerManager,
`) and Kafka 1.1 (KIP-226) provided functionality allowing us to restart the log cleaner thread without restarting the broker.name=time-since-last-run-ms

Then again, these improvements still require manual intervention or at the very least complex infrastructure code that automates the process.
It would be very useful if Kafka had a way to quarantine unexpected failures in certain logs such that they don't affect the cleaning of other logs. While this
would not fix the issue, it would significantly slow down the process and provide users with adequate time for detection and repair.

Public Interfaces
New metrics:

`uncleanable-partitions-count` (Int) - Count of partitions that are uncleanable per logDir
`uncleanable-bytes` (Long) - The current number of uncleanable bytes per logDir. This is the sum of uncleanable bytes for every uncleanable
partition in a certain log directory

 Unable to render Jira issues macro, execution

error.
 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201807.mbox/%3CCANZZNGyR_22GO9SwL67hedCM90XhVPyFzy_TezHZ1MriZqK_tg%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-7215

Proposed Changes
Catch any unexpected (non-IO) exceptions in ` `.CleanerThread#cleanOrSleep()

Properly log the exception and mark the partition that caused the exception as "uncleanable" in a collection in `LogCleaner`'s `LogCleanerManager`.

When , skip the marked as uncleanable ones.evaluating which logs to compact

Compatibility, Deprecation, and Migration Plan
The "time-since-last-run" metric will slightly change its behavior, since the LogCleaner will now continue to run once it encounters an error. Previous
implementations that track the "time-since-last-run" metric for potential disk failures might be affected, but at least disk damage is maximally mitigated by
marking the log directory as offline. If all log directories are offline, "time-since-last-run" will not be updated.

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

Restart `CleanerThread` - it will most likely inevitably hit the same problem before it is able to compact more
Mark disk volumes as "uncleanable" on first encountered error. While this would work, in practice it would not help as most deployments use a
single volume. Also, if the error is caused by a bug in the partition itself (as shown by most JIRA issues in the Motivation paragraph), this will
unnecessarily stop compaction of all other partitions.
Mark log directories as offline after a certain threshold of uncleanable bytes or number of uncleanable partitions. - uncleanable partitions threshold
proved insufficient since previous problems that have been encountered affected a small number of partitions (__consumer_offsets topic).
threshold of uncleanable bytes is hard to get right, as it should be different for each user and the default value should best be -1 (disabled)

https://github.com/apache/kafka/blob/4b60ed3247f0931731904c49dc7381b8eaac88d8/core/src/main/scala/kafka/log/LogCleaner.scala#L295
https://github.com/apache/kafka/blob/4b60ed3247f0931731904c49dc7381b8eaac88d8/core/src/main/scala/kafka/log/LogCleanerManager.scala#L122

	KIP-346 - Improve LogCleaner behavior on error

