
KIP-310: Add a Kafka Source Connector to Kafka Connect

Status
Motivation
Public Interfaces
Proposed Changes

Key Requirements
Basic Implementation Components

Partition Monitor
Source Task

Configuration Options
Standard Options
Advanced Options
Overriding the internal KafkaConsumer and AdminClient Configuration

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Discarded. (supersedes this with a much more complete vision)KIP-382

Discussion thread: here

JIRA: KAFKA-6963

Motivation
Copying messages between Kafka clusters is common enough that Kafka has had its own standalone MirrorMaker tool early on in the project. Kafka
Connect was introduced to provide a standard framework for moving data into and out of Kafka, and it has been quickly adopted by the community with a
large number of connectors available for other platforms. One such connector that does not exist is a Kafka connector. While MirrorMaker does satisfy the
basic functional requirement copying messages between clusters, its standalone nature means that there is additional work required in maintaining the
MirrorMaker cluster, especially in environments where Kafka Connect will also be used.

Public Interfaces
This proposal introduces a new Kafka Connect Source Connector. The source connector is bundled with Kafka Connect alongside the existing file
connector, and can be used to copy data from a Source Kafka Cluster defined in the task configuration, to the Destination Kafka Cluster, denied by the
Kafka Connect configuration.

Proposed Changes
Implementation of a Kafka Source Connector for Kafka Connect. The connector will enable users to implement MirrorMaker like cluster mirroring via Kafka
Connect.

Key Requirements

https://cwiki.apache.org/confluence/display/KAFKA/KIP-382%3A+MirrorMaker+2.0
http://mail-archives.apache.org/mod_mbox/kafka-dev/201806.mbox/%3cF6F1FDD5-A998-4484-BDBF-4A5303F37A8D@comcast.com%3e
https://issues.apache.org/jira/browse/KAFKA-6963

At least once delivery to the destination cluster must be supported
Can specify a topic whitelist as a regular expression (Same as MirrorMaker)

Basic Implementation Components

An is available and provides a solid base for implementation in Kafka. The key components of this existing implementation of a Kafka Source Connector
solution are:

Partition Monitor

Starts an AdminClient in a separate thread when the connector is first started (prior to determining the number of tasks to run) to determine the topics and
partitions available on the source cluster which match the supplied topic list. After the first check of the available partitions, periodically runs (at a
configurable interval) to check if the matching topics or partitions on the source cluster have changed. Triggers a task reconfiguration if it detects that there
has been a change in the matching topic partitions (or, leaders - if option is selected to reconfigure on leader change)

Source Task

Each source task will be started with a list of topic partitions to subscribe to. On task start will start a KafkaConsumer and manually assign (rather than the
 these topic partitions to the consumer. On task start, will check the Kafka connect offset storage for an existing offset for each topic high level subscribe())

partition - if found then it will resume reading the topic partition at this offset, otherwise it will begin from the beginning or the end of the topic (configurable).
Each time the source task's method is called, it will poll the Kafka consumer for available messages, and return them to the connect framework to be poll()
delivered to the Destination cluster.

Note that offset checkpointing is managed by Kafka Connect. As it is common to monitor consumer lag using consumer groups, the connector will also
commit the last batch of offsets to the source Kafka cluster before polling the consumer for new data, unless this is turned off via configuration (consumer.
enable.auto.commit = false).

Configuration Options

Standard Options

These are the most common options that are required when configuring this connector:

Configuration
Parameter

Example Description

source.bootstrap.
servers

source.broker1:9092,source.
broker2:9092

Mandatory. Comma separated list of boostrap servers for the source Kafka cluster

source.topic.whitelist topic, topic-prefix* Java regular expression to match topics to mirror. For convenience, comma (',') is interpreted
as the regex-choice symbol ('|').

source.auto.offset.
reset

latest If there is no stored offset for a partition, indicates where to start consuming from. Options are "e
or . Default: arliest" "latest" earliest

source.group.id kafka-connect Group ID used when writing offsets back to source cluster (for offset lag tracking)

destination.topics.
prefix

aggregate. Prefix to add to source topic names when determining the Kafka topic to publish data to

Advanced Options

Some use cases may require modifying the following default connector options.

Configuration
Parameter

Default Description

include.message.
headers

true Indicates whether message headers from source records should be included when delivered to the destination
cluster.

topic.list.timeout.
ms

60000 Amount of time (in milliseconds) the partition monitor thread should wait for the source kafka cluster to return topic
information before logging a timeout error.

topic.list.poll.
interval.ms

300000 Amount of time (in milliseconds) the partition monitor will wait before re-querying the source cluster for a change in
the topic partitions to be consumed

reconfigure.
tasks.on.leader.
change

false Indicates whether the partition monitor should request a task reconfiguration when partition leaders have changed.
In some cases this may be a minor optimization as when generating task configurations, the connector will try to
group partitions to be consumed by each task by the leader node. The downside to this is that it may result in
additional rebalances.

https://github.com/Comcast/MirrorTool-for-Kafka-Connect

poll.loop.timeout.
ms

1000 Maximum amount of time (in milliseconds) the connector will wait in each poll loop without data before returning
control to the kafka connect task thread.

max.shutdown.
wait.ms

2000 Maximum amount of time (in milliseconds) to wait for the connector to gracefully shut down before forcing the
consumer and admin clients to close. Note that any values greater than the kafka connect parameter task.shutdown.

 will not have any effect.graceful.timeout.ms

source.max.poll.
records

500 Maximum number of records to return from each poll of the internal KafkaConsumer. When dealing with topics with
very large messages, the connector may sometimes spend too long processing each batch of records, causing lag
in offset commits, or in serious cases, unnecessary consumer rebalances. Reducing this value can help in these
scenarios. Conversely, when processing very small messages, increasing this value may improve overall
throughput.

source.key.
deserializer

org.apache.
kafka.
common.
serialization.
ByteArrayDe
serializer

Key deserializer to use for the kafka consumers connecting to the source cluster.

source.value.
deserializer

org.apache.
kafka.
common.
serialization.
ByteArrayDe
serializer

Value deserializer to use for the kafka consumers connecting to the source cluster.

source.enable.
auto.commit

true If true the consumer's offset will be periodically committed to the source cluster in the background.

Note that these offsets are not used to resume the connector (They are stored in the Kafka Connect offset store),
but may be useful in monitoring the current offset lag of this connector on the source cluster

Overriding the internal KafkaConsumer and AdminClient Configuration

Note that standard Kafka parameters can be passed to the internal KafkaConsumer and AdminClient by prefixing the standard configuration parameters
with ."source."

For cases where the configuration for the KafkaConsumer and AdminClient diverges, you can use the more explicit and "connector.consumer." "connector.
 configuration parameter prefixes to fine tune the settings used for each. admin."

Compatibility, Deprecation, and Migration Plan
There is no impact on existing code.

Rejected Alternatives
Sink Connector - This could also be implemented as a Sink Connector. A source connector was chosen as a pull based mode is more common in the
environments the author has encountered. A sink connector should be considered for a follow up release to support the cases where the "owner" of the
Kafka connect instance wishes to push messages into another cluster.

	KIP-310: Add a Kafka Source Connector to Kafka Connect

