
KIP-369: Alternative Partitioner to Support "Always Round-
Robin" Selection

Status
Motivation
Proposed Changes
Public Interfaces
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: [Accepted]

Discussion thread: here

JIRA: KAFKA-3333 Alternative Partitioner to Support "Always Round-Robin" Selection

Motivation
In my organisation, we have been using kafka as the basic publish-subscribe messaging system provider. Our goal is to send event-based (secure,
encrypted) SQL messages reliably, and process them accordingly. For us, the message keys represent some metadata which we use to either ignore
messages (if a loop-back to the sender), or log some information. We have the following use case for messaging:

1) A business object transaction occurs at SQL server/HANA Database.

2) The event is captured at the ORM layer, and messaged across multiple data centres around the world.

3) A group of consumers (for each data centre with a unique consumer-group ID) will process messages from their respective partitions. 1 consumer per
partition.

Under the circumstances, we only need a guarantee that same message won't be sent to multiple partitions. In other words, 1 partition will be sought never
by multiple consumers.

Using DefaultPartitioner, we can achieve this only with NULL keys. But since we need keys for metadata, we cannot maintain "Round-robin" selection of
partitions because a key hash will determine which partition to choose. We need to have round-robin style selection regardless of key type (NULL or not-
NULL).

Proposed Changes
To address this issue, we are proposing an alternative, and more concrete partitioner - "RoundRobinPartitioner". We use "Round-Robin" as the new
partitioner does not focus on the key or paritions. The partitioner code will almost be identical to DefaultPartitioner.partition() method, except that it will
simply execute the "Null Key and No Partition" logic from DefaultPartitioner. The following is the content of partition() method for our new partitioner.

 List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);

 int numPartitions = partitions.size();

 int nextValue = nextValue(topic);

 List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);

 if (availablePartitions.size() > 0) {

 int part = Utils.toPositive(nextValue) % availablePartitions.size();

 return availablePartitions.get(part).partition();

 } else {

 // no partitions are available, give a non-available partition

 return Utils.toPositive(nextValue) % numPartitions;

 }

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-3333

We would also like to clarify that this is not code "Duplication". We do not wish to change the DefaultPartitioner class, but want to "Reuse" certain portion of
its logic to achieve this solution.

Public Interfaces
There is no requirement to change any interfaces. We simply use the existing config in and use a class name. paritioner.class server.properties different
But we are not changing the default value, which is DefaultPartitioner.

We will extend default partitioner and override partition() method to achieve this functionality.

We will be adding some unit tests, but they will simply be a re-use for round-robin tests already performed for DefaultPartitioner.

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?
There is no impact to existing users. This class does not need to be used unless someone has similar requirements.
If we are changing behavior how will we phase out the older behavior?
No change in any existing behaviour, since the class usage is controlled by partitioner.class property in server.properties. We are not changing
the default value.
If we need special migration tools, describe them here.
Not required.
When will we remove the existing behavior?
Not required.

Rejected Alternatives
We could package it within our own custom jar and use it with every Kafka release. But our objective is to get this approved by the user community,
include it in Kafka trunk, and allow other developers to build upon it.

	KIP-369: Alternative Partitioner to Support "Always Round-Robin" Selection

