
KIP-110: Add Codec for ZStandard Compression

Status
Motivation
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

A. Support ZStandard to the old clients which can understand v0, v1 messages only.
B. Bump the API version and support only v2-available clients

B.1. INVALID_REQUEST (42)
B.2. CORRUPT_MESSAGE (2)
B.3 UNSUPPORTED_FOR_MESSAGE_FORMAT (43)

Related issues
Whether to use existing library or not
License

Status
Current state: Accepted

Discussion thread: thread1 thread2

JIRA: KAFKA-4514

Released: 2.1.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
On September 2016, , designed to scale with modern data processing Facebook announced a new compression implementation named ZStandard
environment. With its great performance in both speed and compression rate, lots of popular big data processing frameworks are supporting ZStandard.

Hadoop (3.0.0) -

HBase (2.0.0) -

Spark (2.3.0) -

ZStandard also works well with Apache Kafka. Benchmarks with the draft version (with ZStandard 1.3.3, Java Binding 1.3.3-4) showed significant
performance improvement. The following benchmark is based on Shopify's production environment (Thanks to)@bobrik

blocked URLblocked URL

(Above: Drop around 22:00 is zstd level 1, then at 23:30 zstd level 6.)

As You can see, ZStandard outperforms with a compression ratio of 4.28x; Snappy is just 2.5x and Gzip is not even close in terms of both of ratio and
.speed

It is worth noting that . According to Facebook, this outcome is based on ZStandard 1.3 ZStandard 1.3.4 improves throughput by 20-30%, depending on
.compression level and underlying I/O performance

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

https://www.mail-archive.com/dev@kafka.apache.org/msg63480.html
https://www.mail-archive.com/dev@kafka.apache.org/msg88673.html
https://issues.apache.org/jira/browse/KAFKA-4514
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
https://github.com/apache/kafka/pull/2267#issuecomment-366149315
https://user-images.githubusercontent.com/89186/36294762-b69219dc-1297-11e8-9537-2d214d677211.png
https://user-images.githubusercontent.com/89186/36294778-d275232e-1297-11e8-8522-368ecda49ac9.png
https://blog.cloudflare.com/squeezing-the-firehose/
https://blog.cloudflare.com/squeezing-the-firehose/
https://github.com/facebook/zstd/releases/tag/v1.3.4
https://github.com/facebook/zstd/releases/tag/v1.3.4

1.
2.
3.
4.

(Above: Comparison between ZStandard 1.3.3. vs. ZStandard 1.3.4.)

(Above: Comparison between other compression codecs, supported by Kafka.)

As of September 2018, the draft implementation uses Java binding for ZStandard 1.3.5.

Public Interfaces
This feature introduces a new available option 'zstd' to the compression.type property, which is used in configuring Producer, Topic and Broker. It's id will
be 4.

It also introduces a new error code, UNSUPPORTED_COMPRESSION_TYPE (74). For details on this error code, see 'Compatibility, Deprecation, and
Migration Plan' section.

Proposed Changes
Add a new dependency on .the Java bindings of ZStandard compression
Add a new value on CompressionType enum type and define ZStdCompressionCodec on kafka.message package.
Add a new error type, 'UNSUPPORTED_COMPRESSION_TYPE'.
Implement the compression logic along with compatibility logic described below.

You can check the concept-proof implementation of this feature on .this Pull Request

Compatibility, Deprecation, and Migration Plan

https://github.com/luben/zstd-jni
https://github.com/apache/kafka/pull/2267

1.

2.
3.

4.

1.

2.

We need to establish some backward-compatibility strategy for the case an old client subscribes a topic using ZStandard, explicitly or implicitly (i.e.,
'compression.type' configuration of given topic is 'producer' and the producer compressed the records with ZStandard). After discussion, we decided to
support zstd to the new clients only (i.e., uses v2 format) and return UNSUPPORTED_COMPRESSION_TYPE error for the old clients.

Here is the detailed strategy:

Zstd will only be allowed with magic = 2 format. That is,
Instantiating MemoryRecords with magic < 2 is disallowed.
Down-conversion of zstd-compressed records will not be supported. So if the requested partition uses 'producer' compression codec and
the client requests magic < 2, the broker will down-convert the batch until before using zstd and return with a dummy oversized record in
place of the zstd-compressed batch. When the client attempts to fetch from then on, it will receive a
UNSUPPORTED_COMPRESSION_TYPE error.

Bump produce and fetch request versions. It will give the old clients a message to update their version.
Zstd will only be allowed for the bumped produce API. That is, for older version clients (=below KAFKA_2_1_IV0), we return
UNSUPPORTED_COMPRESSION_TYPE regardless of the message format.
Zstd will only be allowed for the bumped fetch API. That is, if the requested partition uses zstd and the client version is below
KAFKA_2_1_IV0, we return UNSUPPORTED_COMPRESSION_TYPE regardless of the message format.

The following section explains why we chose this strategy.

Rejected Alternatives

A. Support ZStandard to the old clients which can understand v0, v1 messages only.

This strategy necessarily requires the down-conversion of v2 message compressed with Zstandard into v0 or v1 messages, which means a considerable
performance degradation. So we rejected this strategy.

B. Bump the API version and support only v2-available clients

With this approach, we can message the old clients that they are old and should be upgraded. However, there are still several options for the Error code.

B.1. INVALID_REQUEST (42)

This option gives the client so little information; the user can be confused about why the client worked correctly in the past suddenly encounters a problem.
So we rejected this strategy.

B.2. CORRUPT_MESSAGE (2)

This option gives inaccurate information; the user can be surprised and misunderstand that the log files are broken in some way. So we rejected this
strategy.

B.3 UNSUPPORTED_FOR_MESSAGE_FORMAT (43)

The advantage of this approach is that we don't need to define a new error code; we can reuse it and that's all. The disadvantage of this approach is that it
is also a little bit vague; This error code is defined as a work for and now returned in the transaction error.KIP-98

Since adding a new error type is not a big problem and a clear error message always helps, we decided to reject this strategy.

Related issues
This update introduces some related issues like following.

Whether to use existing library or not

There are two ways of adapting ZStandard to Kafka, each of which has its pros and cons.

Use existing bindings.
Pros

Fast to work.
The building task doesn't need ZStandard to be pre-installed to the environment.

Cons
Somebody has to keep the eyeballs on the updates of both of the binding library and ZStandard itself. If needed, he or she has
to update the binding library to adapt them to Kafka.

Add existing JNI bindings directly.
Pros

Can concentrate on the updates of ZStandard only.
Cons

ZStandard has to be pre-installed before building Kafka.

https://issues.apache.org/jira/browse/KAFKA-4990

2.

A little bit cumbersome to work.

The draft implementation adopted the first approach, following its Snappy support. (In contrast, Hadoop follows the latter approach.) You can see the used
JNI binding library at . However, I thought it would be much better to discuss the alternatives, for I am a newbie to Kafka.here

License

We can use zstd and its Java binding, zstd-jni without any problem, but we need to include their license to the project - BSD and BSD 2 Clause license,
respectively. They are not listed in also.the list of prohibited licenses

What we need is attaching the licenses for the dependencies only. on Apache Spark shows how to approach this problem. They did:A recent update

'LICENSE' file: License of the project itself (i.e., Apache License) and the list of source dependencies and their licenses.
'LICENSE-binary' file: The list of binary dependencies and their licenses.
'license' directory: Contains the license files of source dependencies.
'license-binary' directory: Contains the license files of binary dependencies.

https://github.com/luben/zstd-jni
https://www.apache.org/legal/resolved.html#category-x
https://github.com/apache/spark/commit/f825847c82042a9eee7bd5cfab106310d279fc32
https://github.com/apache/spark/blob/master/LICENSE
https://github.com/apache/spark/blob/master/LICENSE-binary
https://github.com/apache/spark/tree/master/licenses
https://github.com/apache/spark/tree/master/licenses-binary

	KIP-110: Add Codec for ZStandard Compression

