
KIP-377: TopicCommand to use AdminClient

Status
Motivation
Public Interfaces

Command-line Options
Proposed Changes
Compatibility, Deprecation, And Migration Plan
Test Plan
Rejected Alternatives

Protocol Changes
Topics Marked For Deletion
AlterTopics Protocol

Status
Current state: Accepted ()vote thread

Discussion thread: here (and the original discussion is)here

JIRA:

Released: 2.2

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently uses only direct Zookeeper connections which is not really desired compared to the AdminClient. This change would aim to kafka-topics.sh
add capability to the TopicCommand to be able to connect to a broker using the AdminClient.

This is part of which outlines the importance of exposing admin operations via the Kafka protocol:KIP-4

Allows clients in any language to administrate Kafka (Wire protocol is supported by any language)
Provides public client for performing admin operations
Ensures integration test code in other projects and clients maintains compatibility
Prevents users from needing to use the Command classes and work around standard output and system exits
Removing the need for admin scripts (, , etc) to talk directly to Zookeeper.kafka-configs.sh kafka-topics.sh
Allows ZNodes to be completely locked down via ACLs
Further hides the Zookeeper details of Kafka

Public Interfaces

Command-line Options

A few extra options will be added to kafka-configs.sh:

--bootstrap-server option will be added to accept config changes. This will would accept a list of brokers that the internal AdminClient would use.

--command-config option will be also added. This would accept a file argument that points to the AdminClient file (such as SSL, connection properties
buffers, etc.).

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/81197417f080edafb6ad4e256579e13a7b7839303197f4fe1901f990@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/4a947bd5fa3437c2a233840efe7e631d09b98668635dc5a3f0160c05@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/dc71d08de8cd2f082765be22c9f88bc9f8b39bb8e0929a3a4394e9da@%3Cdev.kafka.apache.org%3E
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://kafka.apache.org/documentation/#adminclientconfigs

Bootstrap Server Option

val bootstrapServerOpt = parser.accepts("bootstrap-server", "REQUIRED: The Kafka servers to connect to,
separated by commas, for instance "localhost:9091,localhost:9092". In case of providing this, a direct
Zookeeper connection won't be required.")
 .withRequiredArg
 .describedAs("server to connect to")
 .ofType(classOf[String])
val commandConfigOpt = parser.accepts("command-config", "Property file containing connection configs to be
passed to the AdminClient. " +
 "This is used only with --bootstrap-server option.")
 .withRequiredArg
 .describedAs("command config property file")
 .ofType(classOf[String])

Proposed Changes
The change proposed in this KIP is to add an extra option as stated above and to migrate create, delete, list and describe operations to use a broker
connection. This would be a backward compatible change, leaving the zookeeper option available and fully working until a further point in time but would
deprecate it as part of this KIP.

Specific behavior changes

Providing and together would result in an exception as they should be mutually exclusive.--bootstrap-server --zookeeper
Deleting an internal topic is allowed by the protocol and thus by this command as well. If this feature is not desirable, then ALCs must be set
accordingly on the server side or the topic level config must be set.delete.topic.enable=false

Compatibility, Deprecation, And Migration Plan
This KIP won't implement topic config alternation as that is deprecated in the TopicCommand and should be done by . kafka-configs.sh The
only alternation we allow is changing the partition number for topics.

No other existing behavior would be removed and the implementation would be done in a backward compatible way.

Also retrieving the list of topics that are marked for deletion won't be implemented now as currently it's not possible to retrieve via any protocols. This
conversation is part of . The implementation will add a note regarding this in its output.KIP-142

As part of the option deprecation we will mark it as deprecated in the command help but also print out a warning message about using this --zookeeper
deprecated option.

Test Plan
The existing tests will be run with the mode too. Additionally we can refactor some of the usages in the --bootstrap-server kafka-topics.sh
smokes to use the AdminClient mode.

Rejected Alternatives

Protocol Changes

Topics Marked For Deletion

Currently KafkaAdminClient.describeTopics() and KafkaAdminClient.listTopics() uses the
Metadata protocol to acquire topic information. The returned response however won't contain the topics that
are under deletion but couldn't complete yet (for instance because of some replicas offline), therefore it is not
possible to implement the current command's "marked for deletion" feature. To get around this there were
several alternatives that can be seen below but during the discussion we decided to keep this work in KIP-142.
The idea in this KIP was that we could introduce some changes in the Metadata protocol, such as:

Cache topics that are under deletion but some of their replicas are offline.
Create a new error, called TOPIC__DELETION_IN_PROGRESS

https://cwiki.apache.org/confluence/display/KAFKA/KIP-142%3A+Add+ListTopicsRequest+to+efficiently+list+all+the+topics+in+a+cluster
https://cwiki.apache.org/confluence/display/KAFKA/KIP-142%3A+Add+ListTopicsRequest+to+efficiently+list+all+the+topics+in+a+cluster

Bump the Metadata request version. The format of the protocol won't change, only the fact that there is a new Error type that we're introducing,
but that requires bumping the protocol as old clients won't be able to handle it and most probably end up in an .UNKNOWN_SERVER_ERROR
Smarten up the to also return the list of topics under deletion with the above errorKafkaApis.handleTopicMetadataRequest

TOPIC_DELETION_IN_PROGRESS

public enum Errors {
 // ...
 TOPIC_DELETION_IN_PROGRESS(74, "Topic deletion is in progress.",
 TopicDeletionInProgressException::new);
 // ...
}

public class TopicDeletionInProgressException extends ApiException {

 private static final long serialVersionUID = 4767321103391338488L;

 public TopicDeletionInProgressException(String message) {
 super(message);
 }
}

AlterTopics Protocol

At an early stage of the KIP discussion it occured that there is a need for a protocol that would handle topic partition changes, such as increasing the
partition number. It got rejected as a similar api, called CreatePartitions already exists and we don't need a new protocol.

For archiving purposes here is the protocol:

AlterTopics Protocol Request and Response

AlterTopics Request (version: 0) => validate_only [topic_change]
 validate_only => BOOLEAN
 topic_change => topic_name target_partition_number
 topic_name => STRING
 target_partition_number => INT32

AlterTopics Response (version: 0) => throttle_time_ms [topic_change_result]
 throttle_time_ms => INT32
 topic_change_result => topic_name error_code error_message
 topic_name => STRING
 error_code => INT16
 error_message => NULLABLE_STRING

Authorization implications:

From the authorization perspective using this protocol would require an ALTER operation on a Topic resource. Both currently available and
therefore can be used.

	KIP-377: TopicCommand to use AdminClient

