
1.

2.

3.
4.

5.

6.

Incremental Cooperative Rebalancing for Streams
TL;DR
This is an addendum of the parent page on reducing rebalance cost, with a focus on Kafka Streams: as of today rebalancing is a costly operation that we
need to optimize to achieve faster and more efficient application starts/restarts/shutdowns, failovers, elasticity.

Goals
At a high-level, we want to of Streams applications.strengthen the operability
To achieve faster and more efficient (notably rolling restarts and rolling upgrades)application startups / restarts / shutdowns

"More efficient" includes less unnecessary network traffic and load on both app instances and on the backing Kafka clusters.
Very similar to the previous point, to achieve faster and more efficient (e.g. when 1 app instance out of 10 has died and the remaining 9 failovers
app instances need to take over work).

"Very similar" because, from a rebalancing standpoint, there's not much difference between a planned app instance restart and an
unplanned failover event, for example.

To achieve faster and more efficient (scale in/scale out).elasticity

Desired features
We'd like to present the returned value in categories of scenarios. Note that sticky assignment and standby replication would be relevant determining the
impact of each scenario.

Also I'm sorting the scenarios by their commonness and user impact (subjective and open for discussion):

Application start: when multi-instance application is started, multiple rebalances are required to migrate states to newly started instances. Standby
-replication will not help.
Application shutdown: when multi-instance application is shutting down, multiple rebalances are required. Standby-replication only slightly
remedy this situation.
Application scale out: when a new instance is started, one rebalance is executed to shuffle all assignment. Standby-replication will not help.
Application scale in: when an existing instance gracefully shutdown, once rebalance is executed to shuffle all assignment. Standby-replication
will largely help in this situation.
Application instance bounce (upgrade, config change etc): one instance shut down and then restart, it will trigger two rebalances. Standby-
replication will largely help in this situation.
Application instance failure: one instance failed, and probably a new instance start to take its assignment, it will trigger two rebalances. The
different with 3) above is that new instance would not have local cached tasks. Standby-replication will not help.

Proposal
We have two proposals to generally improve the rebalance protocol in (we consider the Incremental Cooperative Rebalancing: Support and Policies
"Incremental Imbalance" as a follow-up of "Delayed Imbalance").

1) approach tackles on not involving all the partitions in each assignment as it will incurs committing costs; instead it introduces a partiton Simple
revokation field in the protocol such that a second join can be triggered to finally move the assignment.

2) approach takes one step further on the Simple approach, that it defers (by a configured timeout) the second rebalance to really Delayed Imbalance
migrate the partitions; note in Simple the second rebalance to migrate the partitions always happen immediately.

There is a third semi-orthogonal proposal dependent on the Simple approach above:

3) approach targeted to reduce new member taking restoration with long latency, by letting the new joining member to be assigned Standby Bootstrap
standby tasks only at first, and then when it has bootstraped completed trigger a another join group to move the active task.

I'd like to summarize their values on the above scenarios below compared with what we have today (counting the existing optimizations we have done as
of 2017.Q4).

Note again the LOE is my personal estimates:

Approach
/ LOE

App Start App Shutdown App Scale-Up App Scale-Down Instance Bounce Instance
Failureover

https://cwiki-test.apache.org/confluence/display/KAFKA/Incremental+Cooperative+Rebalancing%3A+Support+and+Policies

Current MAYBE OK

KIP-134 would
help reduce #.
rebalances with
right configs

MAYBE OK

Disable leave-
group would help
reduce #.
rebalances

BAD

Rebalance cannot be
saved
New member always
needs time to restore
KAFKA-6144 / 6145

MAYBE OK With

Standby:

Rebalance would be cheap,
as we pay the suspension
cost for all tasks

BAD Without

Standby:

Without standby rebalance
always requires restoration
for both non-related tasks
and related tasks (assuming
it is a complete shuffle)

MAYBE OK

Disable leave-
group may
reduce to one
rebalance, but in
practice it may
less likely
That single
rebalance would
be cheap with
sticky partitionor

MAYBE OK

 With Standby:

Most likely
triggers two
rebalances
With standby the
first rebalance
would be cheap,
the second
rebalance needs
restoration

BAD

 Without standby:

Most likely
triggers two
rebalances
Without standby
two rebalances
would be
expensive due to
restoration

Simple MAYBE BETTER

Similar to .Current
May save task
suspension cost
but incur more
rebalances

MAYBE BETTER

Similar to .Current
May save task
suspension cost
but incur more
rebalances

BAD

Same to .Current

BEST With

standby:

Would be very cheap
because all we need is to
pick the standby host as the
new active host while keeping
all other tasks un-touched;
hence we can save even the
task suspension cost for non
related tasks

BETTER Without

standby:

Rebalance always requires
restoration for related tasks,
although for other tasks we
can save suspension cost

BETER

Similar to .Current
That single
rebalance would
be even cheaper
because we save
task suspension
cost

MAYBE BETTER

 With Standby:

Similar to .Current
May save task
suspension cost
but incur one
more rebalance
With standby the
first rebalance
would be cheap,
the second
rebalance would
be cheap, the
third would
require restoration

BAD

 Without Standby:

Similar to .Current
May save task
suspension cost
but incur one
more rebalanc.
Without standby
the first rebalance
would require
restoration, the
second rebalance
would be cheap,
the third would
require restoration

Delayed
Imbalance

BETTER

Could subsume
KIP-134
Reduce #.
rebalances with
the right config

BEST

Could subsume
leave-group
disabling.
Could reduce to
no heavy
rebalance at all
with the right
config

BAD

Same to .Current

BEST With

standby:

Same to .Simple

BETTER Without

standby:

Same to .Simple

BEST

Same to .Simple

BETTER

 With Standby:

Compared to Sim
, The first ple

rebalance would
be cheaper, as it
would not cause
anyone to take
over the partition
and restore.

BETTER

 Without standby:

The first
rebalance would
be cheap, as it
would not cause
anyone to take
over the partition
and restore.

Standby
Bootstrap

MAYBE BETTER

Same to Simple.

MAYBE BETTER

Same to Simple.

BEST

Would require three
rebalances, the first
one to assign the
standby, the second
to notify the exising
to revoke, and the
third to migrate the
active task.

BEST With

standby:

Same to .Simple

BEST Without

standby:

Require one more rebalance,
but the migrated task would
bootstrap via standby first.

BEST

Same to .Simple

BETTER

 With Standby:

Compared to Sim
, the third ple

rebalance will be
shorter as the
previous
rebalance will
make the new
member to
bootstrap first

STILL NOT GOOD

 Without standby:

Compared to Sim
, the third ple

rebalance will be
shorter as the
previous
rebalance will
make the new
member to
bootstrap first
However, the first
rebalance would
still be expensive
due to restoration.

Delayed
Imbalance
+ Standby
Bootstrap

BETTER

Simple as Delaye
.d Imbalance

BEST

Simple as Delaye
.d Imbalance

BEST

Same as Standby
.Bootstrap

BEST With

standby:

Same as .Simple

BEST Without

standby:

Same as .Standby Bootstrap

BEST

Same to .Simple

BEST

 With Standby:

Only requires two
rebalance, the
first is for
bootstrap the new
member, and the
second for
assigning the
active task.

BEST

 Without standby:

Same as above
without standby
tasks.
Only requires two
rebalance, the
first is for
bootstrap the new
member, and the
second for
assigning the
active task.

	Incremental Cooperative Rebalancing for Streams

