
1.
2.
3.
4.

KIP-380: Detect outdated control requests and bounced
brokers using broker generation

Status
Motivation
Public Interfaces

Changes in Control Requests:
New Error Code:

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

Vote thread: here

JIRA: KAFKA-7235

Pull Request: PR-5821

Relates to:

KAFKA-6604
KAFKA-1120

Motivation
Currently, controller interacts with brokers by sending out control requests (LeaderAndIsrRequest, UpdateMetadataRequest, StopReplicaRequest) to
brokers and detecting broker state change by listening on the /brokers/ids/znode. Broker can only rejects controller requests if they are sent from a stale
controller with older controller epoch. The following assumptions have been made in the current implementation:

Broker should always process the control requests sent by the active controller.
Controller should always process the ControlledShutdownRequest sent by the broker.
The first LeaderAndIsrRequest received by a broker after it starts up always contains all partitions hosted by the broker.
By the time a broker finishes bouncing, controller should have processed the BrokerChange event.

These assumptions does not always hold and there will be correctness issues if either one of the assumption breaks. For example:

If a broker bounces during controlled shutdown, the bounced broker may accidentally process its earlier generation’s StopReplicaRequest sent
from the active controller for one of its follower replicas, leaving the replica offline while its remaining replicas may stay online
If controller receives old ControlledShutdownRequest () after the broker has been bounced, controller will proactively send out due to retries
control requests to the broker, which may leave the broker in a bad state.
If the first LeaderAndIsrRequest that a broker processes is sent by the active controller before its startup, the broker will overwrite the high
watermark checkpoint file and may cause incorrect truncation ()KAFKA-7235
If a broker bounces very quickly, the controller may start processing the BrokerChange event after the broker already re-registers itself in zk. In
this case, controller will miss the broker restart and will not send any requests to the broker for initialization. The broker will not be able to accept
traffics.

Also, these issues will happen more frequently if we further optimize the broker rolling bounce time. The optimization () is currently blocked by KAFKA-7283
this KIP.

The root cause of these correctness issues is that we don't have a way to distinguish the broker's state after a bounce. To fix these issues, this KIP
proposes the concept of broker generation, which is a unique & monotonically increasing value that changes every time when a broker (re)-joins the
cluster. Control requests will include the broker generation of the destination broker and a broker will reject requests that are intended to be sent to the
previous generations. Controller will use the broker generation to detect bounced brokers.

Public Interfaces
This KIP will include the broker generation (broker_epoch) in LeaderAndIsrRequest, UpdateMetadataRequest, StopReplicaRequest,
ControlledShutdownRequest and bump up their protocol versions. Since we will evolve the schema of control requests in this KIP, I would also normalize
the schema of these requests by avoiding data redundancy for the topic strings to reduce the memory footprint in the controller side and reduce the
amount of data we send across the network.

Changes in Control Requests:

https://lists.apache.org/thread.html/2497114df64993342eaf9c78c0f14bf8c1795bc3305f13b03dd39afd@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/3689d83db537d5aa86d10967dee7ee29578897fc123daae4f77a8605@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-7235
https://github.com/apache/kafka/pull/5821
https://issues.apache.org/jira/browse/KAFKA-6604
https://issues.apache.org/jira/browse/KAFKA-1120
https://issues.apache.org/jira/browse/KAFKA-7235
https://jira.apache.org/jira/browse/KAFKA-7283

LeaderAndIsrRequest V2

LeaderAndIsr Request => controller_id controller_epoch broker_epoch [topic_states] [live_leaders]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64 <-- NEW
 topic_states => topic [partition_states] <-- NEW
 topic => STRING
 partitions_states => partition controller_epoch leader leader_epoch [isr] zk_version [replicas] is_new
 partition => INT32
 controller_epoch => INT32
 leader => INT32
 leader_epoch => INT32
 isr => INT32
 zk_version => INT32
 replicas => INT32
 is_new => BOOLEAN
 live_leaders => id host port
 id => INT32
 host => STRING
 port => INT32

UpdateMetadataReuqest V5

UpdateMetadata Request => controller_id controller_epoch broker_epoch [topic_states] [live_brokers]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64 <-- NEW
 topic_states => topic [partition_states] <-- NEW
 topic => STRING
 partition_states => partition controller_epoch leader leader_epoch [isr] zk_version [replicas]
[offline_replicas]
 partition => INT32
 controller_epoch => INT32
 leader => INT32
 leader_epoch => INT32
 isr => INT32
 zk_version => INT32
 replicas => INT32
 offline_replicas => INT32
 live_brokers => id [end_points] rack
 id => INT32
 end_points => port host listener_name security_protocol_type
 port => INT32
 host => STRING
 listener_name => STRING
 security_protocol_type => INT16
 rack => NULLABLE_STRING

StopReplicaRequest V1

StopReplica Request => controller_id controller_epoch broker_epoch delete_partitions [topic_partitions]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64 <-- NEW
 delete_partitions => BOOLEAN
 topic_partitions => topic [partition] <-- NEW
 partition => INT32

1.
2.

3.
4.

1.
2.

ControlledShutdownRequest V2

ControlledShutdown Request => broker_id broker_epoch
 broker_id => INT32
 broker_epoch => INT64 <-- NEW

Note: Normalizing the schema is a good-to-have optimization because the memory footprint for the control requests hinders the controller from scaling up if
we have many topics with large partition counts. We already did the same thing in other types of request (e.g. Produce, Fetch, ...).

New Error Code:

New error code STALE_BROKER_EPOCH (77) and a new type of exception StaleBrokerEpochException will be added. This error is used in the following
scenario:

When a broker sees a LeaderAndIsrRequest/UpdateMetadataRequest/StopReplicaRequest with outdated broker epoch, it will respond back
with STALE_BROKER_EPOCH error. The controller resend the request. will not
When the controller sees a ControlledShutdownRequest with outdated broker epoch, it will respond back with STALE_BROKER_EPOCH error. If
the broker gets quickly restarted, it will no see the error response since the channel has already been closed during broker shutdown. If the
broker just gets disconnected from zookeeper and re-connect during controlled shutdown, it will retry to send the ControlledShutdownRequest
with newer broker epoch to controller.

Proposed Changes
Broker Registration in Zookeeper

The czxid (create transation id) of the broker's zookeeper ephemeral znode will be used for broker generation.

When a broker (re)-joins the cluster, it needs to create the ephemeral znode in /brokers/ids/ and get back the broker generation (czxid) atomically in order
to reject requests applied to old generations. Since czxid is only available in the Stat of the znode and zookeeper does not include the Stat of the znode in
the CreateResponse, we need to use zookeeper multi op to atomically create and get the Stat of the znode (through a SetData Op). This also requires a
ZookeeperClient refactor because we don't expose multi op explicitly.

Broker Rejects Control Requests Applied to Former Generations

A broker will extract the broker generation (czxid) in LeaderAndIsrRequest/UpdateMetadataRequest/StopReplicaRequest and will reject the requests with
smaller broker generation than its current generation.

Controller Rejects ControlledShutdownRequest Sent from Former Generations

During controlled shutdown, the broker will include its current broker generation (czxid) in the ControlledShutdownRequest. Upon receiving
ControlledShutdownRequest, controller will check the broker generation (czxid) in ControlledShutdownRequest and will reject the request if its broker
generation is smaller broker generation than the broker generation cached in the controller side. This guarantees controller will not attempt to send out
control requests to move partitions and stop replicas in reaction to a broker cleaned shutdown if the broker has already been restarted.

Controller Detects Bounced Broker

In order to avoid missing broker state change when fast broker bounce happens, the logic in controller processing BrokerChange event should be:

Reads all child nodes in /brokers/ids/ to get current brokers with broker generation
Detect new brokers, dead brokers and bounced brokers:

new brokers: brokers exist in current brokers list and do not exist in controller context
dead brokers: brokers exist in controller context but do not exist in current brokers list
bounce brokers: brokers exist in both current brokers list and controller context but have higher generation than the cached value in
controller context

Update the live broker ids in controller context
Handle broker state change:

new brokers: update broker generation in controller context for new brokers, then invoke onBrokerStartUp(new brokers)
dead brokers: invoke onBrokerFailure(dead brokers)
bounced brokers: invoke onBrokerFailure(bounced brokers) first, then update broker generation in controller context for bounced
brokers, finally invoke onBrokerStartUp(bounced brokers)

Compatibility, Deprecation, and Migration Plan
Upgrade the brokers once with the inter-broker protocol set to the previous deployed version
Upgrade the brokers again with an updated inter-broker protocol.

Rejected Alternatives
We considered using the zookeeper client's session id as the broker generation previously because in this case broker can avoid the multi op workaround
to get the broker generation by calling ZooKeeper.getSessionId() and the controller can read the ephemeralOwner property of the broker znode to infer the
broker generation. But later on we realized that this approach is incorrect because zookeeper client's session id is not monotonically increasing.

	KIP-380: Detect outdated control requests and bounced brokers using broker generation

