
KIP-390: Support Compression Level

Status
Motivation
Public Interfaces
Proposed Changes
Benchmark

Produce Test
Producer
Data
Environment
Broker/Topic

Result
Linear Write Test
Result

Compatibility, Deprecation, and Migration Plan
Further works

Compression buffer size option
Long window size with Zstandard

Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-7632

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Basically, CPU (running time) and I/O (compressed size) are trade-offs in compression. Since the best is use case dependent, lots of compression libraries
provide a way to control the compression level with a reasonable default level, which results in a good performance in general. However, Kafka does not
provide a way to configure the compression level - it uses the default level only.

This proposal suggests adding the compression level option to the producer, broker, and topic config. Running tests with a real-world dataset (see below),
I found that this option improves the producer's message/second rate up to 156%.

Public Interfaces
This feature introduces 3 new options, 'compression.gzip.level','compression.lz4.level' and 'compression.snappy.level' to the producer, topic, and broker
configuration. Snappy is excluded since it does not support any compression level. The type of these options is an integer.

For example

compression.type=gzip
compression.gzip.level=4 # NEW: Compression level to be used.

The table below shows the valid range of level per compression.type. If the level is not explicitly set by the user, the default value from the compression
library will be used like it is done today. The valid range and default value of the compression level are entirely up to the compression library, so they may
be changed in the future.

Compression Codec Valid Range

gzip 1 () ~ 9Deflater.BEST_SPEED (Deflater.BEST_COMPRESSION)

lz4 1 ~ 17

zstd -131072 ~ 22

Proposed Changes
This option impacts the following processes:

https://lists.apache.org/thread.html/rf56d512739db2471e8a3a3495c44a628eb8f141fed8e1e3d9ecfbf92%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-7632

Producer compresses the user-given messages.
Broker recompresses the user-given messages with specified compression.type per broker or topic.
Broker recompresses the messages in the log cleanup process.

Compressing the records with the given compression type and level works like the following:

If 'compression.type' is none or snappy, 'compression.<codec>.level' is ignored.
If 'compression.<codec>.level' is not in the valid range, it raises an error.
If 'compression.<codec>.level' is in the valid range, the producer compresses the records with the given level.
If 'compression.<codec>.level' is not set, it falls back to the default level.

Benchmark

Produce Test

To benchmark how compression level affects the producer performance, I ran a small benchmark with a real-world dataset like below:

Producer

With the feature implemented on top of the latest trunk (commit ccec9b0), I ran kafka-producer-perf-test.sh on GraalVM Java 8 v21.1.0 with the following
parameters:

Number of records: 100,000
batch.size: 1048576 (1mb)
linger.ms: 100

Data

A random sample of 4096 real-world records from , which consists of 129218 json files with an average size of 55.25kb. this dataset

Environment

MS Azure Kubernetes Cluster (Seoul Region), consists of 16 nodes of Standard_DS2_v2 (2vCPU, 7GB RAM, Expected network bandwidth of 1500 Mbps.)

Broker/Topic

Apache Kafka 2.7.0, GraalVM Java 8 (21.1.0), replicaton factor = 3.

Result

codec level produced message / sec latency (ms) size (bytes) description

none 2,739.50 205.34 5,659,454,754

gzip 1 1,122.96 1,230.22 1,787,505,238 min. level

gzip 6 717.71 2,041.24 1,644,280,629 default level

gzip 9 608.54 2,413.66 1,643,517,758 max. level

lz4 1 1,694.69 603.46 2,211,346,795 min. level

lz4 9 1,199.93 878.85 2,184,022,257 default level

lz4 17 495.34 2,110.55 2,178,643,665 max. level

zstd -5 7,653.45 156.88 1,997,500,892 experimental level

zstd 1 6,317.52 68.55 1,521,783,958

zstd 3 4,760.54 286.79 1,494,620,615 default level

zstd 12 988.95 863.89 1,458,150,768

zstd 18 85.20 2,017.92 1,492,015,424

It shows the following:

Codec is the main factor that differentiates the compressed size. However, The compression level makes little impact on it. The maximum
improvement is is gzip/1 vs. gzip/9 (8%), and the minimum is lz4/1 vs. lz/17 (1.5%).
Excepting zstd/-5, when the compression level gets lower, messages/sec increase but latency decreases. Especially, compressing with zstd/1
produces 32.7% more messages per second than zstd/3 (current default), and gzip/1 produces 56.4% than gzip/6 (current default).
For every compression codec, compression with minimum level (i.e., speed first strategy) resulted in the best messages/second rate.

https://www.kaggle.com/krsna540/synthea-dataset-jsons-ehr
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series

Linear Write Test

To benchmark how compression level affects the linear write performance, I ran a small benchmark with a real-world dataset like below:

INCLUDE_TEST_JARS=true bin/kafka-run-class.sh kafka.TestLinearWriteSpeed --bytes 8192 --size 8192 --message-
size 4096 --files 1 --compression {compression-codec} --level {compression-level} --log

Result

codec level write speed (mb/sec) description

none 19678.841

gzip 1 22007.042 min. level

gzip 6 18425.707 default level

gzip 9 19148.284 max. level

lz4 1 22776.967 min. level

lz4 9 20613.456 default level

lz4 17 19879.134 max. level

zstd -5 19531.25 experimental level

zstd 1 22910.557

zstd 3 19531.25 default level

zstd 12 17477.628

zstd 18 21229.619

The result was almost similar. In general, the minimum compression level (=1) showed the best write speed (except zstd/-5).

Compatibility, Deprecation, and Migration Plan
Since this update follows the default compression level and current buffer size if they are not set, there is no backward compatibility problem.

Further works
Alongside the compression level, I am trying additional configuration options, like the following:

Compression buffer size option

At the initial stage, the compression buffer size option was also under consideration. However, during the benchmark, I could not find its positive impacts
on produce speed or compressed size. I am still investigating whether it can improve the disk write speed, e.g., Broker-size recompression or compaction.

Long window size with Zstandard

With 1.3.2, Zstandard introduced compression/decompression with . This option can improve the compression/decompression speed for long window size
some levels.

Rejected Alternatives
Introduce a single configuration: compression.level. This was the original proposal that was voted. However while we noticed reviewing the PR
that it was hard to use as each codec has its own range of compression levels. So for example setting compression.level to 20 would be valid
with zstd but an error with gzip. Also a follow up KIP, , aims at introducing per codec configurations using the compression.<codec>.KIP-780
<option> syntax. For these reason, it seems preferable to use configurations with the 'compression.<codec>.level' format for consistency.

https://github.com/facebook/zstd/releases/tag/v1.3.2
https://github.com/apache/kafka/pull/10826#issuecomment-1795952612
https://cwiki.apache.org/confluence/display/KAFKA/KIP-780%3A+Support+fine-grained+compression+options

	KIP-390: Support Compression Level

