
KIP-391: Allow Producing with Offsets for Cluster
Replication [Discarded]

Status
Motivation
Public Interfaces

Network protocol
new Error Code
new version for ProduceRequest (v8)
new version for ProduceResponse (v8)

Changes to the Java API
New class InvalidProduceOffsetException
Change to ProducerRecord
New class ProducerRecordWithOffset

new Acl Operation
Command line tools and arguments

Rejected Alternatives

co-authored-by: <mickael.maison@ >Mickael Maison gmail.com

co-authored-by: <ecomar@uk.ibm.com>Edoardo Comar

Status
Current state: "Discarded"

Discussion thread: or here here

JIRA: KAFKA-7666

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Replicating topic data across multiple Kafka clusters is a very common scenario and there are many tools that provide this functionality. However simply
copying topic records (key/value/headers/timestamp) may not be enough in many use cases.

Offsets are currently automatically assigned by brokers upon receiving messages. So when replicating data into another cluster, messages in the
destination cluster are likely to have a different offsets than the originals in the source cluster. This makes replicating the __consumer_offsets topic
ineffective and consumers can't rely on their group metadata stored in the source cluster when switching to another cluster.

We propose a mechanism to replicate records able to maintain the same offset in both clusters.
Such a mechanism could be easily used in Kafka Connect, although the Connect framework will need to be updated slightly. That enhancement will be the
subject of a follow-up KIP.

Proposed Changes
We propose allowing producers to send each record data (key/value/headers/timestamp) with an offset. That offset can be accepted by the broker as the
offset in the topic-partition log.

Producers can send a record-with-offset.
The Record Accumulator yields batches that only contain records with consecutive offsets.
The Sender sends with a flag. ProduceRequests "use_offset"

When the broker handles requests with this flag set:
it checks against a new required permission () in the ACL. This operation is checked against the .ReplicatorWrite ClusterResource
it uses the provided offsets instead of generating new incremental ones.

The broker still ensures offsets are monotonically increasing.
If a batch violates this requirement, an Error is returned.InvalidProducerOffset

The broker ensures batches only contain records with sequential offsets.
If a batch violates this requirement, a Error is returned.CorruptRecord
Batches are required to only contain sequential offsets because the last offset is used to compute the last sequence for Idempotent
Producers.

The contains per-topic-partition LogEndOffsets.ProduceResponse

Public Interfaces

https://cwiki-test.apache.org/confluence/display/~mickael.maison
http://gmail.com/
https://cwiki-test.apache.org/confluence/display/~ecomar
http://mail-archives.apache.org/mod_mbox/kafka-dev/201811.mbox/%3COF0DB48916.950BB562-ON8025834C.005D9284-8025834C.005E15AB@notes.na.collabserv.com%3E
https://lists.apache.org/list.html?dev@kafka.apache.org:lte=3y:KIP-391
https://issues.apache.org/jira/browse/KAFKA-7666

Network protocol

new Error Code

INVALID_PRODUCE_OFFSET (77)

new version for ProduceRequest (v8)

Produce Request (Version: 8) => transactional_id acks timeout [topic_data]
 transactional_id => NULLABLE_STRING
 acks => INT16
 timeout => INT32
 topic_data => topic [data]
 topic => STRING
 data => partition record_set
 partition => INT32
 record_set => RECORDS
 use_offset => BOOLEAN <--- NEW

new version for ProduceResponse (v8)

Produce Response (Version: 8) => [responses] throttle_time_ms
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition error_code base_offset log_append_time log_start_offset
 partition => INT32
 error_code => INT16
 base_offset => INT64
 log_append_time => INT64
 log_start_offset => INT64
 log_end_offset => INT64 <--- NEW
 throttle_time_ms => INT32

Changes to the Java API

New class InvalidProduceOffsetException

InvalidProduceOffsetException.java

package org.apache.kafka.common.errors;
/**
 * Thrown when the offset specified in a Produce request is smaller than the current Log End Offset
 * @see org.apache.kafka.clients.producer.ProducerRecordWithOffset
 */
public class InvalidProduceOffsetException extends InvalidOffsetException {
 public InvalidProduceOffsetException(String message);
 public InvalidProduceOffsetException(String message, long logEndOffset);
 public long getLogEndOffset();
}

This exception is mapped to the new protocol Error 77

Change to ProducerRecord

ProducerRecord.java

package org.apache.kafka.clients.producer;
public class ProducerRecord {
 // ...
 // new method
 public OptionalLong offset() {
 return OptionalLong.empty();
 }
}

New class ProducerRecordWithOffset

ProducerRecordWithOffset.java

package org.apache.kafka.clients.producer;
public class ProducerRecordWithOffset<K, V> extends ProducerRecord<K, V> {
 //constructor
 public ProducerRecordWithOffset(String topic, Integer partition, Long timestamp,
 K key, V value, Iterable<Header> headers,
 long offset);
 @Override
 public OptionalLong offset() {
 return OptionalLong.of(this.offset);
 }
}

new Acl Operation

AclOperation.java

package org.apache.kafka.common.acl;
public enum AclOperation {
 /**
 * REPLICATOR_WRITE operation (Produce with offsets).
 */
 REPLICATOR_WRITE((byte) 13);
}

Command line tools and arguments

The tool has been updated to handle the new ACL operationAclCommand

Compatibility, Deprecation, and Migration Plan
This is new functionality that does not impact existing users.

Rejected Alternatives
Allow batches with non consecutive offsets (gaps):

Sending batches with non consecutive offsets could provide more efficient batching on the client side,. However allowing such gaps
would require changes to how the idempotent producers state is stored in the brokers, i.e. changes to the log format. The current
consecutive offset assumption allows to easily compute the next expected sequence for idempotent producers.

Add new producer method for sending regular records plus offsets
To keep the Producer API simple, we decided to extend the ProducerRecord

Mixing records with and without offset in a single ProduceRequest
The replicator use case does not need to handle ProduceRequest in which some partitions have assigned offsets and some don't. So, in
order to keep the implementation simple, the new flag is per-ProduceRequest and not per-topic-partition.

Log level replication including empty/control batches
To fit in Kafka Connect, we preferred a replicator running at the regular client level instead of a lower level client based on raw protocol
messages
By not replicating the control batches, consumers in the target cluster won't be able to distinguish between committed/uncommitted
records.
The replicator will have to run choosing one isolation level.

	KIP-391: Allow Producing with Offsets for Cluster Replication [Discarded]

