
KIP-401: TransformerSupplier/ProcessorSupplier
StateStore connecting

Status
Motivation
Public Interfaces

ConnectedStoreProvider
TransformerSupplier
ValueTransformerSupplier
ValueTransformerWithKeySupplier
ProcessorSupplier

Compatibility, Deprecation, and Migration Plan
Alternatives

Have the added method on the Supplier interfaces only return store names, not builders
Do nothing

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/thread.html/600996d83d485f2b8daf45037de64a60cebdfac9b234bf3449b6b753@%3Cdev.kafka.apache.org%
3E

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
When writing low-level and that are stateful using kafka streams, often the processors (or transformers, I'll use Processors Transformers
"processors" to refer to both for brevity) want to "own" one or more state stores, the details of which are not important to the business logic of the
application. However, when incorporating these into a topology defined by the high level DSL, using , you're forced to specify the state KStream:process
store names so the topology is wired up correctly. This creates a clumsy pattern where the "owned" state store's name must be passed alongside the Tra

, when the supplier itself could just as easily supply that information on their own.nsformerSupplier

An example of the clumsiness:

String stateStoreName = "my-store";
StoreBuilder<KeyValueStore> storeBuilder =
 Stores.keyValueStoreBuilder(Stores.inMemoryKeyValueStore(stateStoreName), keySerde, valSerde);
topology.addStateStore(storeBuilder);
ProcessorSupplier processorSupplier = new MyStatefulProcessorSupplier(stateStoreName, val -> businessLogic
(val));
builder.stream("input.topic")
 .map(...)
 .filter(...)
 .process(processorSupplier, stateStoreName);

Both the main topology definition (the chained, high-level DSL calls on , , and) and the internal implementation of StreamBuilder KStream KTable MySt
 need to know the state store name, when it should really only by that atefulProcessorSupplier MyStatefulProcessorSupplier

cares. Additionally, and the creation of the are required, all of which ought to be implicit topology.addStateStore(storeBuilder) StoreBuilder
when using . Ultimately, because requires store names as a separate argument, all of this MyStatefulProcessorSupplier KStream:process
"wiring" code is necessary alongside or nearby actual business logic.

Ideally, it would be reducible to something like:

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread.html/600996d83d485f2b8daf45037de64a60cebdfac9b234bf3449b6b753@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/600996d83d485f2b8daf45037de64a60cebdfac9b234bf3449b6b753@%3Cdev.kafka.apache.org%3E

builder.stream("input.topic")
 .map(...)
 .filter(...)
 .process(MyStatefulProcessorSupplier.make(val -> businessLogic(val)));

This allows for the same "reads top to bottom" type of clarity as when using (and) as when using the high-level DSL.Processors Transformers

Public Interfaces
Add an interface ConnectedStoreProvider that allows the implementor to specify state stores that should be connected to this processor/transformer
(defaulting to no stores).

ConnectedStoreProvider

public interface ConnectedStoreProvider {
 default Set<StoreBuilder> stores() {
 return null;
 }
}

Change all interfaces to extend from it:Processor/TransformerSupplier

TransformerSupplier

public interface TransformerSupplier<K, V, R> extends ConnectedStoreProvider {
 ...
}

ValueTransformerSupplier

public interface ValueTransformerSupplier<V, VR> extends ConnectedStoreProvider {
 ...
}

ValueTransformerWithKeySupplier

public interface ValueTransformerWithKeySupplier<K, V, VR> extends ConnectedStoreProvider {
 ...
}

ProcessorSupplier

public interface ProcessorSupplier<K, V> extends ConnectedStoreProvider {
 ...
}

Proposed Changes

The proposal is to enhance the and interfaces by allowing them to provide information about what state ProcessorSupplier TransformerSupplier
stores they "own" when constructing a topology using , StreamsBuilder KStream::process, KStream::transform, KStream::
transformValues, and Topology::addProcessor.

The public interface changes above directly imply what needs to be changed in The etc methods would get state store names from KStream: process
the list of that the supplier (which implements) provides, rather than the var args .StoreBuilders ConnectedStoreProvider stateStoreNames

The method would add the to the topology using and connect the store to that processor, process StoreBuilders builder.addStateStore()
rather than requiring the user to do it themselves. In order to solve the problem of potentially being called twice for the same store addStateStore
(because more than one specifies it), the check for duplicate stores in will be relaxed to allow for duplicates if the same Supplier addStateStores Sto

 instance for the same store name (compared by referenced, not).reBuilder equals()

Compatibility, Deprecation, and Migration Plan
Because the added interface methods are with a reasonable default, those additions are backwards compatible.default

A user may continue to "connect" stores to a processor by passing when calling . This may stateStoreNames stream.process/transform(...)
be used in combination with a that provides its own state stores by implementing .Supplier ConnectedStoreProvider::stores()

If a that was manually added is also returned by a , there is no issue since adding a state store will now be StoreBuilder ConnectedStoreProvider
idempotent.

No migration tools are required since it's a relatively minor library change.

Alternatives

Have the added method on the Supplier interfaces only return store names, not builders

This solves the original issue only partially, but with perhaps less "API risk." The argument would no longer be needed String... stateStoreNames
on the methods, but the user would still need to manually add the to the . The downside is we don't achieve the full KStream StoreBuilders Topology
reduction of "wiring up" code required when building the topology (the user still needs to know to call , but the upside is topology.addStateStore())
that the is less coupled to the . I don't consider this upside significant, but perhaps there are other use cases I'm not StoreBuilder *Supplier
considering.

Do nothing

This is a "quality of life" API improvement, and nothing more, so maybe it's unneeded churn. I favor doing something (obviously) because I think that while
small, this change can be a major usability improvement for the low-level API.

	KIP-401: TransformerSupplier/ProcessorSupplier StateStore connecting

