You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 6 Next »

Apache Camel

User Guide

Version 2.15.0


Copyright 2007-2016, Apache Software Foundation

Introduction

Apache Camel ™ is a versatile open-source integration framework based on known Enterprise Integration Patterns.

Camel empowers you to define routing and mediation rules in a variety of domain-specific languages, including a Java-based Fluent API, Spring or Blueprint XML Configuration files, and a Scala DSL. This means you get smart completion of routing rules in your IDE, whether in a Java, Scala or XML editor.

Apache Camel uses URIs to work directly with any kind of Transport or messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as well as pluggable Components and Data Format options. Apache Camel is a small library with minimal dependencies for easy embedding in any Java application. Apache Camel lets you work with the same API regardless which kind of Transport is used - so learn the API once and you can interact with all the Components provided out-of-box.

Apache Camel provides support for Bean Binding and seamless integration with popular frameworks such as CDISpring, Blueprint and Guice. Camel also has extensive support for unit testing your routes.

The following projects can leverage Apache Camel as a routing and mediation engine:

  • Apache ServiceMix - a popular distributed open source ESB and JBI container
  • Apache ActiveMQ - a mature, widely used open source message broker
  • Apache CXF - a smart web services suite (JAX-WS and JAX-RS)
  • Apache Karaf - a small OSGi based runtime in which applications can be deployed
  • Apache MINA - a high-performance NIO-driven networking framework

So don't get the hump - try Camel today! (smile)

Too many buzzwords - what exactly is Camel?

Okay, so the description above is technology focused.
There's a great discussion about Camel at Stack Overflow. We suggest you view the post, read the comments, and browse the suggested links for more details.

Quickstart

To start using Apache Camel quickly, you can read through some simple examples in this chapter. For readers who would like a more thorough introduction, please skip ahead to Chapter 3.

Walk through an Example Code

This mini-guide takes you through the source code of a simple example.

Camel can be configured either by using Spring or directly in Java - which this example does.

This example is available in the examples\camel-example-jms-file directory of the Camel distribution.

We start with creating a CamelContext - which is a container for Components, Routes etc:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java}There is more than one way of adding a Component to the CamelContext. You can add components implicitly - when we set up the routing - as we do here for the FileComponent:{snippet:id=e3|lang=java|url=camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java}or explicitly - as we do here when we add the JMS Component:{snippet:id=e2|lang=java|url=camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java}The above works with any JMS provider. If we know we are using ActiveMQ we can use an even simpler form using the activeMQComponent() method while specifying the brokerURL used to connect to ActiveMQ

In normal use, an external system would be firing messages or events directly into Camel through one if its Components but we are going to use the ProducerTemplate which is a really easy way for testing your configuration:{snippet:id=e4|lang=java|url=camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java}Next you must start the camel context. If you are using Spring to configure the camel context this is automatically done for you; though if you are using a pure Java approach then you just need to call the start() method

camelContext.start();

This will start all of the configured routing rules.

So after starting the CamelContext, we can fire some objects into camel:{snippet:id=e5|lang=java|url=camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java}

What happens?

From the ProducerTemplate - we send objects (in this case text) into the CamelContext to the Component test-jms:queue:test.queue. These text objects will be converted automatically into JMS Messages and posted to a JMS Queue named test.queue. When we set up the Route, we configured the FileComponent to listen off the test.queue.

The File FileComponent will take messages off the Queue, and save them to a directory named test. Every message will be saved in a file that corresponds to its destination and message id.

Finally, we configured our own listener in the Route - to take notifications from the FileComponent and print them out as text.

That's it!

If you have the time then use 5 more minutes to Walk through another example that demonstrates the Spring DSL (XML based) routing.

Walk through another example

Introduction

Continuing the walk from our first example, we take a closer look at the routing and explain a few pointers - so you won't walk into a bear trap, but can enjoy an after-hours walk to the local pub for a large beer (wink)

First we take a moment to look at the Enterprise Integration Patterns - the base pattern catalog for integration scenarios. In particular we focus on Pipes and filters - a central pattern. This is used to route messages through a sequence of processing steps, each performing a specific function - much like the Java Servlet Filters.

Pipes and filters

In this sample we want to process a message in a sequence of steps where each steps can perform their specific function. In our example we have a JMS queue for receiving new orders. When an order is received we need to process it in several steps:

  • validate
  • register
  • send confirm email

This can be created in a route like this:

<route>
   <from uri="jms:queue:order"/>
   <pipeline>
      <bean ref="validateOrder"/>
      <bean ref="registerOrder"/>
      <bean ref="sendConfirmEmail"/>
   </pipeline>
</route>

Pipeline is default

In the route above we specify pipeline but it can be omitted as its default, so you can write the route as:

<route>
   <from uri="jms:queue:order"/>
   <bean ref="validateOrder"/>
   <bean ref="registerOrder"/>
   <bean ref="sendConfirmEmail"/>
</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a multicast and "one" of the endpoints to send to (as a logical group) is a pipeline of other endpoints. For example.

<route>
   <from uri="jms:queue:order"/>
   <multicast>
     <to uri="log:org.company.log.Category"/>
     <pipeline>
       <bean ref="validateOrder"/>
       <bean ref="registerOrder"/>
       <bean ref="sendConfirmEmail"/>
     </pipeline>
   </multicast>
</route>

The above sends the order (from jms:queue:order) to two locations at the same time, our log component, and to the "pipeline" of beans which goes one to the other. If you consider the opposite, sans the <pipeline>

<route>
   <from uri="jms:queue:order"/>
   <multicast>
     <to uri="log:org.company.log.Category"/>
     <bean ref="validateOrder"/>
     <bean ref="registerOrder"/>
     <bean ref="sendConfirmEmail"/>
   </multicast>
</route>

you would see that multicast would not "flow" the message from one bean to the next, but rather send the order to all 4 endpoints (1x log, 3x bean) in parallel, which is not (for this example) what we want. We need the message to flow to the validateOrder, then to the registerOrder, then the sendConfirmEmail so adding the pipeline, provides this facility.

Where as the bean ref is a reference for a spring bean id, so we define our beans using regular Spring XML as:

   <bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

Our validator bean is a plain POJO that has no dependencies to Camel what so ever. So you can implement this POJO as you like. Camel uses rather intelligent Bean Binding to invoke your POJO with the payload of the received message. In this example we will not dig into this how this happens. You should return to this topic later when you got some hands on experience with Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from the JMS queue the message is routed like Pipes and filters:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as input to the registerOrder bean
3. the output from registerOrder bean is sent as input to the sendConfirmEmail bean

Using Camel Components

In the route lets imagine that the registration of the order has to be done by sending data to a TCP socket that could be a big mainframe. As Camel has many Components we will use the camel-mina component that supports TCP connectivity. So we change the route to:

<route>
   <from uri="jms:queue:order"/>
   <bean ref="validateOrder"/>
   <to uri="mina:tcp://mainframeip:4444?textline=true"/>
   <bean ref="sendConfirmEmail"/>
</route>

What we now have in the route is a to type that can be used as a direct replacement for the bean type. The steps is now:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as text to the mainframe using TCP
3. the output from mainframe is sent back as input to the sendConfirmEmai bean

What to notice here is that the to is not the end of the route (the world (wink)) in this example it's used in the middle of the Pipes and filters. In fact we can change the bean types to to as well:

<route>
   <from uri="jms:queue:order"/>
   <to uri="bean:validateOrder"/>
   <to uri="mina:tcp://mainframeip:4444?textline=true"/>
   <to uri="bean:sendConfirmEmail"/>
</route>

As the to is a generic type we must state in the uri scheme which component it is. So we must write bean: for the Bean component that we are using.

Conclusion

This example was provided to demonstrate the Spring DSL (XML based) as opposed to the pure Java DSL from the first example. And as well to point about that the to doesn't have to be the last node in a route graph.

This example is also based on the in-only message exchange pattern. What you must understand as well is the in-out message exchange pattern, where the caller expects a response. We will look into this in another example.

See also

Error rendering macro 'include'

org.owasp.validator.html.ScanException: java.util.EmptyStackException

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml Configuration to configure routing and mediation rules which are added to a CamelContext to implement the various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a collection of Component instances. A Component is essentially a factory of Endpoint instances. You can explicitly configure Component instances in Java code or an IoC container like Spring or Guice, or they can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS system; you can communicate with an endpoint; either sending messages to it or consuming messages from it. You can then create a Producer or Consumer on an Endpoint to exchange messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to make a truly powerful DSL which is extensible to the most suitable language depending on your needs. The following languages are supported

For a full details of the individual languages see the Language Appendix

URIs

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created by a Component if you refer to them within Routes.

important

Make sure to read How do I configure endpoints to learn more about configuring endpoints. For example how to refer to beans in the Registry or how to use raw values for password options, and using property placeholders etc.

Current Supported URIs

Component / ArtifactId / URI

Description

AHCcamel-ahc

ahc:http[s]://hostName[:port][/resourceUri][?options]

To call external HTTP services using Async Http Client

AHC-WS camel-ahc-ws

ahc-ws[s]://hostName[:port][/resourceUri][?options]


 To exchange data with external Websocket servers using Async Http Client

AMQPcamel-amqp

amqp:[queue:|topic:]destinationName[?options]

For Messaging with AMQP protocol

APNScamel-apns

apns:<notify|consumer>[?options]

For sending notifications to Apple iOS devices

Atmosphere-Websocket   camel-atmosphere-websocket

atmosphere-websocket:///relative path[?options]


 To exchange data with external Websocket clients using Atmosphere

Atomcamel-atom

atom:atomUri[?options]

Working with Apache Abdera for atom integration, such as consuming an atom feed.

Avrocamel-avro

avro:[transport]:[host]:[port][/messageName][?options]

Working with Apache Avro for data serialization.

AWS-CW / camel-aws

aws-cw://namespace[?options]

For working with Amazon's CloudWatch (CW).

AWS-DDB / camel-aws

aws-ddb://tableName[?options]

For working with Amazon's DynamoDB (DDB).

AWS-DDBSTREAM / camel-aws

aws-ddbstream://tableName[?options]

For working with Amazon's DynamoDB Streams (DDB Streams).

AWS-EC2 / camel-aws

aws-ec2://label[?options]

For working with Amazon's Elastic Compute Cloud (EC2).

AWS-SDB / camel-aws

aws-sdb://domainName[?options]

For working with Amazon's SimpleDB (SDB).

AWS-SES / camel-aws

aws-ses://from[?options]

For working with Amazon's Simple Email Service (SES).

AWS-SNS / camel-aws

aws-sns://topicName[?options]

For Messaging with Amazon's Simple Notification Service (SNS).

AWS-SQS / camel-aws

aws-sqs://queueName[?options]

For Messaging with Amazon's Simple Queue Service (SQS).

AWS-SWF / camel-aws

aws-swf://<worfklow|activity>[?options]

For Messaging with Amazon's Simple Workflow Service (SWF).

AWS-S3 / camel-aws

aws-s3://bucketName[?options]

For working with Amazon's Simple Storage Service (S3).

Beancamel-core

bean:beanName[?options]

Uses the Bean Binding to bind message exchanges to beans in the Registry. Is also used for exposing and invoking POJO (Plain Old Java Objects).

Beanstalk camel-beanstalk

beanstalk:hostname:port/tube[?options]

For working with Amazon's Beanstalk.

Bean Validatorcamel-bean-validator

bean-validator:label[?options]

Validates the payload of a message using the Java Validation API (JSR 303 and JAXP Validation) and its reference implementation Hibernate Validator

Boxcamel-box

box://endpoint-prefix/endpoint?[options]

For uploading, downloading and managing files, managing files, folders, groups, collaborations, etc. on Box.com.

Braintreecamel-braintree

braintree://endpoint-prefix/endpoint?[options]


Component for interacting with Braintree Payments via Braintree Java SDK

Browsecamel-core

browse:someName

Provides a simple BrowsableEndpoint which can be useful for testing, visualisation tools or debugging. The exchanges sent to the endpoint are all available to be browsed.

Cachecamel-cache

cache://cacheName[?options]

The cache component facilitates creation of caching endpoints and processors using EHCache as the cache implementation.

Cassandra / camel-cassandraql

cql:localhost/keyspace


For integrating with Apache Cassandra.

Classcamel-core

class:className[?options]

Uses the Bean Binding to bind message exchanges to beans in the Registry. Is also used for exposing and invoking POJO (Plain Old Java Objects).

Chronicle Enginecamel-chronicle

chronicle-engine:addresses/path[?options]
Chronicle Engine is a high performance, low latency, reactive processing framework.

Chunkcamel-chunk

chunk:templateName[?options]

Generates a response using a Chunk template

CMIScamel-cmis

cmis://cmisServerUrl[?options]

Uses the Apache Chemistry client API to interface with CMIS supporting CMS

Cometdcamel-cometd

cometd://hostName:port/channelName[?options]

Used to deliver messages using the jetty cometd implementation of the bayeux protocol

Consulcamel-consul

consul:apiEndpoint[?options]

For interfacing with an  Consul.

Contextcamel-context

context:camelContextId:localEndpointName[?options]

Used to refer to endpoints within a separate CamelContext to provide a simple black box composition approach so that routes can be combined into a CamelContext and then used as a black box component inside other routes in other CamelContexts

ControlBuscamel-core

controlbus:command[?options]

ControlBus EIP that allows to send messages to Endpoints for managing and monitoring your Camel applications.

CouchDBcamel-couchdb

couchdb:hostName[:port]/database[?options]

To integrate with Apache CouchDB.

Crypto (Digital Signatures)camel-crypto

crypto:<sign|verify>:name[?options]

Used to sign and verify exchanges using the Signature Service of the Java Cryptographic Extension.

CXFcamel-cxf

cxf:<bean:cxfEndpoint|//someAddress>[?options]

Working with Apache CXF for web services integration

CXF Bean camel-cxf

cxfbean:serviceBeanRef[?options]

Proceess the exchange using a JAX WS or JAX RS annotated bean from the registry. Requires less configuration than the above CXF Component

CXFRScamel-cxf

cxfrs:<bean:rsEndpoint|//address>[?options]

Working with Apache CXF for REST services integration

DataFormatcamel-core

dataformat:name:<marshal|unmarshal>[?options]

for working with Data Formats as if it was a regular Component supporting Endpoints and URIs.

DataSetcamel-core

dataset:name[?options]

For load & soak testing the DataSet provides a way to create huge numbers of messages for sending to Components or asserting that they are consumed correctly

Directcamel-core

direct:someName[?options]

Synchronous call to another endpoint from same CamelContext.

Direct-VMcamel-core

direct-vm:someName[?options]

Synchronous call to another endpoint in another CamelContext running in the same JVM.

DNScamel-dns

dns:operation[?options]

To lookup domain information and run DNS queries using DNSJava

Disruptorcamel-disruptor

disruptor:someName[?<option>]
disruptor-vm:someName[?<option>]

To provide the implementation of SEDA which is based on disruptor

Dockercamel-docker

docker://[operation]?[options]


 To communicate with Docker

Dozercamel-dozer

dozer://name?[options]

 To convert message body using the Dozer type converter library.

Dropbox camel-dropbox

dropbox://[operation]?[options]

The  dropbox:  component allows you to treat  Dropbox  remote folders as a producer or consumer of messages.

EJBcamel-ejb

ejb:ejbName[?options]

Uses the Bean Binding to bind message exchanges to EJBs. It works like the Bean component but just for accessing EJBs. Supports EJB 3.0 onwards.

Ehcachecamel-ehcache

ehcache://cacheName[?options]

The cache component facilitates creation of caching endpoints and processors using Ehcache 3 as the cache implementation.

ElasticSearchcamel-elasticsearch

elasticsearch://clusterName[?options]

For interfacing with an ElasticSearch server.

Etcdcamel-etcd

etcd:namespace[/path][?options]

For interfacing with an Etcd key value store.

Spring Eventcamel-spring

spring-event://default

Working with Spring ApplicationEvents

EventAdmincamel-eventadmin

eventadmin:topic[?options]

Receiving OSGi EventAdmin events

Execcamel-exec

exec://executable[?options]

For executing system commands

Facebookcamel-facebook

facebook://endpoint[?options]

Providing access to all of the Facebook APIs accessible using Facebook4J

Filecamel-core

file://nameOfFileOrDirectory[?options]

Sending messages to a file or polling a file or directory.

Flatpackcamel-flatpack

flatpack:[fixed|delim]:configFile[?options]

Processing fixed width or delimited files or messages using the FlatPack library

Flinkcamel-flink

flink:dataset[?options]
flink:datastream[?options]

 Bridges Camel connectors with Apache Flink tasks.

FOPcamel-fop

fop:outputFormat[?options]

Renders the message into different output formats using Apache FOP

FreeMarkercamel-freemarker

freemarker:templateName[?options]

Generates a response using a FreeMarker template

FTPcamel-ftp

ftp:contextPath[?options]

Sending and receiving files over FTP.

FTPScamel-ftp

ftps://[username@]hostName[:port]/directoryName[?options]

Sending and receiving files over FTP Secure (TLS and SSL).

Gangliacamel-ganglia

ganglia:destination:port[?options]

Sends values as metrics to the Ganglia performance monitoring system using gmetric4j.  Can be used along with JMXetric.

GAuth / camel-gae

gauth://name[?options]

Used by web applications to implement an OAuth consumer. See also Camel Components for Google App Engine.

GHttp / camel-gae

ghttp:contextPath[?options]

Provides connectivity to the URL fetch service of Google App Engine but can also be used to receive messages from servlets. See also Camel Components for Google App Engine.

Git / camel-git

git:localRepositoryPath[?options]

Supports interaction with Git repositories

Github / camel-github

github:endpoint[?options]

Supports interaction with Github

GLogin / camel-gae

glogin://hostname[:port][?options]

Used by Camel applications outside Google App Engine (GAE) for programmatic login to GAE applications. See also Camel Components for Google App Engine.

GTask / camel-gae

gtask://queue-name[?options]

Supports asynchronous message processing on Google App Engine by using the task queueing service as message queue. See also Camel Components for Google App Engine.

Google Calendar / camel-google-calendar

google-calendar://endpoint-prefix/endpoint?[options] 

Supports interaction with Google Calendar's REST API.

Google Drive / camel-google-drive

google-drive://endpoint-prefix/endpoint?[options]

Supports interaction with Google Drive's REST API.

Google Mail / camel-google-mail

google-mail://endpoint-prefix/endpoint?[options]

Supports interaction with Google Mail's REST API.

GMail / camel-gae

gmail://user@g[oogle]mail.com[?options]

Supports sending of emails via the mail service of Google App Engine. See also Camel Components for Google App Engine.

Gora camel-gora

gora:instanceName[?options]


Supports to work with NoSQL databases using the Apache Gora framework.

Grapecamel-grape

 grape:defaultMavenCoordinates

Grape component allows you to fetch, load and manage additional jars when CamelContext is running.

Geocodercamel-geocoder

geocoder:<address|latlng:latitude,longitude>[?options]

Supports looking up geocoders for an address, or reverse lookup geocoders from an address.

Google Guava EventBuscamel-guava-eventbus

guava-eventbus:busName[?options]

The Google Guava EventBus allows publish-subscribe-style communication between components without requiring the components to explicitly register with one another (and thus be aware of each other). This component provides integration bridge between Camel and Google Guava EventBus infrastructure.

Hazelcast / camel-hazelcast

hazelcast://[type]:cachename[?options]

Hazelcast is a data grid entirely implemented in Java (single jar). This component supports map, multimap, seda, queue, set, atomic number and simple cluster support.

HBasecamel-hbase

hbase://table[?options]

For reading/writing from/to an HBase store (Hadoop database)

HDFScamel-hdfs

hdfs://hostName[:port][/path][?options]

For reading/writing from/to an HDFS filesystem using Hadoop 1.x

HDFS2camel-hdfs2

hdfs2://hostName[:port][/path][?options]

For reading/writing from/to an HDFS filesystem using Hadoop 2.x

Hipchatcamel-hipchat

hipchat://[host][:port]?options

 For sending/receiving messages to Hipchat using v2 API

HL7camel-hl7

mina2:tcp://hostName[:port][?options]

For working with the HL7 MLLP protocol and the HL7 data format using the HAPI library

Infinispancamel-infinispan

infinispan://cacheName[?options]

For reading/writing from/to Infinispan distributed key/value store and data grid

HTTPcamel-http

http:hostName[:port][/resourceUri][?options]

For calling out to external HTTP servers using Apache HTTP Client 3.x

HTTP4camel-http4

http4:hostName[:port][/resourceUri][?options]

For calling out to external HTTP servers using Apache HTTP Client 4.x

iBATIScamel-ibatis

ibatis://statementName[?options]

Performs a query, poll, insert, update or delete in a relational database using Apache iBATIS

Ignitecamel-ignite

ignite:[cache/compute/messaging/...][?options]

Apache Ignite  In-Memory Data Fabric is a high-performance, integrated and distributed in-memory platform for computing and transacting on large-scale data sets in real-time, orders of magnitude faster than possible with traditional disk-based or flash technologies. It is designed to deliver uncompromised performance for a wide set of in-memory computing use cases from high performance computing, to the industry most advanced data grid, highly available service grid, and streaming.

IMAPcamel-mail

imap://[username@]hostName[:port][?options]

Receiving email using IMAP

IMAPScamel-mail

imaps://[username@]hostName[:port][?options]

...

IRCcamel-irc

irc:[login@]hostName[:port]/#room[?options]

For IRC communication

IronMQ camel-ironmq

ironmq:queueName[?options]


For working with IronMQ a elastic and durable hosted message queue as a service.

JavaSpacecamel-javaspace

javaspace:jini://hostName[?options]

Sending and receiving messages through JavaSpace

jBPMcamel-jbpm

jbpm:hostName[:port][/resourceUri][?options]

Sending messages through kie-remote-client API to jBPM.

jcachecamel-jcache

jcache:cacheName[?options]

The JCache component facilitates creation of caching endpoints and processors using JCache / jsr107 as the cache implementation.

jcloudscamel-jclouds

jclouds:<blobstore|compute>:[provider id][?options]

For interacting with cloud compute & blobstore service via jclouds

JCRcamel-jcr

jcr://user:password@repository/path/to/node[?options]

Storing a message in a JCR compliant repository like Apache Jackrabbit

JDBCcamel-jdbc

jdbc:dataSourceName[?options]

For performing JDBC queries and operations

Jettycamel-jetty

jetty:hostName[:port][/resourceUri][?options]

For exposing or consuming services over HTTP

JGroupscamel-jgroups

jgroups:clusterName[?options]

The jgroups: component provides exchange of messages between Camel infrastructure and JGroups clusters.

JIRAcamel-jira

jira://endpoint[?options]

For interacting with JIRA

JMScamel-jms

jms:[queue:|topic:]destinationName[?options]

Working with JMS providers

JMXcamel-jmx

jmx://platform[?options]

For working with JMX notification listeners

JPAcamel-jpa

jpa://entityName[?options]

For using a database as a queue via the JPA specification for working with OpenJPA, Hibernate or TopLink

JOLT camel-jolt

jolt:specName[?options]


 

The jolt: component allows you to process a JSON messages using an JOLT specification. This can be ideal when doing JSON to JSON transformation.

Jschcamel-jsch

scp://hostName[:port]/destination[?options]

Support for the scp protocol

JT/400 camel-jt400

jt400://user:pwd@system/<path_to_dtaq>[?options]

For integrating with data queues on an AS/400 (aka System i, IBM i, i5, ...) system

Kafkacamel-kafka

kafka://server:port[?options]


For producing to or consuming from Apache Kafka message brokers.

Kestrelcamel-kestrel

kestrel://[addresslist/]queueName[?options]

For producing to or consuming from Kestrel queues

Kraticamel-krati

krati://[path to datastore/][?options]

For producing to or consuming to Krati datastores

Kubernetescamel-kubernetes

kubernetes:masterUrl[?options]

 For integrating your application with Kubernetes standalone or on top of OpenShift.

Kuracamel-kura

 

For deploying Camel OSGi routes into the Eclipse Kura M2M container.

Languagecamel-core

language://languageName[:script][?options]

Executes Languages scripts

LDAPcamel-ldap

ldap:host[:port][?options]

Performing searches on LDAP servers (<scope> must be one of object|onelevel|subtree)

LinkedIncamel-linkedin

linkedin://endpoint-prefix/endpoint?[options]

Component for retrieving LinkedIn user profiles, connections, companies, groups, posts, etc. using LinkedIn REST API.

Logcamel-core

log:loggingCategory[?options]

Uses Jakarta Commons Logging to log the message exchange to some underlying logging system like log4j

Lucenecamel-lucene

lucene:searcherName:<insert|query>[?options]

Uses Apache Lucene to perform Java-based indexing and full text based searches using advanced analysis/tokenization capabilities

Lumberjackcamel-lumberjack

lumberjack:host[:port]

 Uses the Lumberjack protocol for retrieving logs (from Filebeat for instance)

Metricscamel-metrics

metrics:[meter|counter|histogram|timer]:metricname[?options]

Uses Metrics   to collect application statistics directly from Camel routes.

MINAcamel-mina

mina:[tcp|udp|vm]:host[:port][?options]

Working with Apache MINA 1.x

MINA2camel-mina2

mina2:[tcp|udp|vm]:host[:port][?options]

Working with Apache MINA 2.x

Mockcamel-core

mock:name[?options]

For testing routes and mediation rules using mocks

MLLPcamel-mllp

mllp:host:port[?options]


The MLLP component is specifically designed to handle the nuances of the MLLP protocol and provide the functionality required by Healthcare providers to communicate with other systems using the MLLP protocol

MongoDBcamel-mongodb

mongodb:connectionBean[?options]

Interacts with MongoDB databases and collections. Offers producer endpoints to perform CRUD-style operations and more against databases and collections, as well as consumer endpoints to listen on collections and dispatch objects to Camel routes

MongoDB GridFScamel-mongodb-gridfs

mongodb-gridfs:dbName[?options]

Sending and receiving files via MongoDB's GridFS system. Note: for Camel < 2.19, the URI syntax is gridfs:dbName[?options]

MQTTcamel-mqtt

mqtt:name[?options]

Component for communicating with MQTT M2M message brokers

MSVcamel-msv

msv:someLocalOrRemoteResource[?options]

Validates the payload of a message using the MSV Library

Mustachecamel-mustache

mustache:templateName[?options]

Generates a response using a Mustache template

MVELcamel-mvel

mvel:templateName[?options]

Generates a response using an MVEL template

MyBatiscamel-mybatis

mybatis://statementName[?options]

Performs a query, poll, insert, update or delete in a relational database using MyBatis

Nagioscamel-nagios

nagios://hostName[:port][?options]

Sending passive checks to Nagios using JSendNSCA

NATScamel-nats

nats://servers[?options] 

For messaging with the NATS platform.

Nettycamel-netty

netty:<tcp|udp>//host[:port][?options]

Working with TCP and UDP protocols using Java NIO based capabilities offered by the Netty project

Netty4 camel-netty4

netty4:<tcp|udp>//host[:port][?options]


 Working with TCP and UDP protocols using Java NIO based capabilities offered by the Netty project

Netty HTTPcamel-netty-http

netty-http:http:[port]/context-path[?options]

Netty HTTP server and client using the Netty project

Netty4 HTTPcamel-netty4-http

netty4-http:http:[port]/context-path[?options]
 Netty HTTP server and client using the Netty project 4.x

Olingo2camel-olingo2

olingo2:endpoint/resource-path[?options]

Communicates with OData 2.0 services using Apache Olingo 2.0.

Openshiftcamel-openshift

openshift:clientId[?options]

To manage your Openshift applications.

OptaPlannercamel-optaplanner

optaplanner:solverConfig[?options]

Solves the planning problem contained in a message with OptaPlanner.

Paho camel-paho

paho:topic[?options]


 Paho component provides connector for the MQTT messaging protocol using the Paho library.

Pax-Loggingcamel-paxlogging

paxlogging:appender

Receiving Pax-Logging events in OSGi

PDFcamel-pdf

pdf:operation[?options]

Allows to work with Apache PDFBox PDF documents

PGEvent camel-pgevent

pgevent:dataSource[?options]


Allows for Producing/Consuming PostgreSQL events related to the LISTEN/NOTIFY commands added since PostgreSQL 8.3

POP3camel-mail

pop3s://[username@]hostName port][?options]

Receiving email using POP3 and JavaMail

POP3Scamel-mail

pop3s://[username@]hostName port][?options]

...

Printercamel-printer

lpr://host:port/path/to/printer[?options]

The printer component facilitates creation of printer endpoints to local, remote and wireless printers. The endpoints provide the ability to print camel directed payloads when utilized on camel routes.

Propertiescamel-core

properties://key[?options]

The properties component facilitates using property placeholders directly in endpoint URI definitions.

Quartzcamel-quartz

quartz://groupName/timerName[?options]

Provides a scheduled delivery of messages using the Quartz 1.x scheduler

Quartz2camel-quartz2

quartz2://groupName/timerName[?options]

Provides a scheduled delivery of messages using the Quartz 2.x scheduler

Quickfixcamel-quickfix

quickfix:configFile[?options]

Implementation of the QuickFix for Java engine which allow to send/receive FIX messages

RabbitMQcamel-rabbitmq

rabbitmq://hostname[:port]/exchangeName[?options]

Component for integrating with RabbitMQ

Refcamel-core

ref:name

Component for lookup of existing endpoints bound in the Registry.

Restcamel-core

rest:verb:path[?options]

Component for consuming Restful resources supporting the Rest DSL and plugins to other Camel rest components.

Restletcamel-restlet

restlet:restletUrl[?options]

Component for consuming and producing Restful resources using Restlet

REST Swagger / camel-rest-swagger

rest-swagger:[specificationUri#]operationId[?options]

Component for accessing REST resources using Swagger specification as configuration.

RMIcamel-rmi

rmi://hostName[:port][?options]

Working with RMI

RNCcamel-jing

rnc:/relativeOrAbsoluteUri[?options]

Validates the payload of a message using RelaxNG Compact Syntax

RNGcamel-jing

rng:/relativeOrAbsoluteUri[?options]

Validates the payload of a message using RelaxNG

Routeboxcamel-routebox

routebox:routeBoxName[?options]

Facilitates the creation of specialized endpoints that offer encapsulation and a strategy/map based indirection service to a collection of camel routes hosted in an automatically created or user injected camel context

RSScamel-rss

rss:uri[?options]

Working with ROME for RSS integration, such as consuming an RSS feed.

Salesforcecamel-salesforce

salesforce:topic[?options]

To integrate with Salesforce

SAP NetWeavercamel-sap-netweaver

sap-netweaver:hostName[:port][?options]

To integrate with SAP NetWeaver Gateway

Schedulercamel-core

scheduler://name?[options]

Used to generate message exchanges when a scheduler fires. The scheduler has more functionality than the timer component.

schematroncamel-schematron

schematron://path?[options]

Camel component of Schematron which supports to validate the XML instance documents.

SEDAcamel-core

seda:someName[?options]

Asynchronous call to another endpoint in the same CamelContext

ServiceNowcamel-servicenow

servicenow:instanceName[?options]

 Camel component for ServiceNow

SERVLETcamel-servlet

servlet:relativePath[?options]

For exposing services over HTTP through the servlet which is deployed into the Web container.

SFTPcamel-ftp

sftp://[username@]hostName[:port]/directoryName[?options]

Sending and receiving files over SFTP (FTP over SSH).

Sipcamel-sip

sip://user@hostName[:port][?options]

Publish/Subscribe communication capability using the Telecom SIP protocol. RFC3903 - Session Initiation Protocol (SIP) Extension for Event

SIPScamel-sip

sips://user@hostName[:port][?options]

...

SJMS  / camel-sjms

sjms:[queue:|topic:]destinationName[?options]

A ground up implementation of a JMS client

sjms-batch:[queue:]destinationName[?options]

A specialized JMS component for highly-performant transactional batch consumption from a queue.

Slackcamel-slack

slack:#channel[?options]

 The  slack  component allows you to connect to an instance of  Slack  and delivers a message contained in the message body via a pre established  Slack incoming webhook .

SMTPcamel-mail

smtps://[username@]hostName[:port][?options]

Sending email using SMTP and JavaMail

SMTPcamel-mail

smtps://[username@]hostName[:port][?options]

...

SMPPcamel-smpp

smpp://[username@]hostName[:port][?options]

To send and receive SMS using Short Messaging Service Center using the JSMPP library

SMPPScamel-smpp

smpps://[username@]hostName[:port][?options]

...

SNMPcamel-snmp

snmp://hostName[:port][?options]

Polling OID values and receiving traps using SNMP via SNMP4J library

Solrcamel-solr

solr://hostName[:port]/solr[?options]

Uses the Solrj client API to interface with an Apache Lucene Solr server

Apache Sparkcamel-spark

spark:{rdd|dataframe|hive}[?options]

Bridges Apache Spark computations with Camel endpoints.

Spark-restcamel-spark-rest

spark-rest://verb:path[?options]


 For easily defining REST services endpoints using Spark REST Java library.

Splunkcamel-splunk

splunk://[endpoint][?options]

For working with Splunk

SpringBatchcamel-spring-batch

spring-batch://jobName[?options]

To bridge Camel and Spring Batch

SpringIntegrationcamel-spring-integration

spring-integration:defaultChannelName[?options]

The bridge component of Camel and Spring Integration

Spring LDAPcamel-spring-ldap

spring-ldap:springLdapTemplateBean[?options]

Camel wrapper for Spring LDAP

Spring Rediscamel-spring-redis

spring-redis://hostName:port[?options]

Component for consuming and producing from Redis key-value store Redis

Spring Web Servicescamel-spring-ws

spring-ws:[mapping-type:]address[?options]

Client-side support for accessing web services, and server-side support for creating your own contract-first web services using Spring Web Services

SQLcamel-sql

sql:select * from table where id=#[?options]

Performing SQL queries using JDBC

SQL Stored Procedure camel-sql

sql-stored:template[?options]


Performing SQL queries using Stored Procedure calls

SSH component / camel-ssh

ssh:[username[:password]@]hostName[:port][?options]

For sending commands to a SSH server

StAXcamel-stax

stax:(contentHandlerClassName|#myHandler)

Process messages through a SAX ContentHandler.

Streamcamel-stream

stream:[in|out|err|file|header|url][?options]

Read or write to an input/output/error/file stream rather like unix pipes

Stompcamel-stomp

stomp:queue:destinationName[?options]

For communicating with Stomp compliant message brokers, like Apache ActiveMQ or ActiveMQ Apollo

StringTemplatecamel-stringtemplate

string-template:templateName[?options]

Generates a response using a String Template

Stubcamel-core

stub:someOtherCamelUri[?options]

Allows you to stub out some physical middleware endpoint for easier testing or debugging

Telegramcamel-telegram

telegram://bots/authToken[?options]

Allows to exchange data with the Telegram messaging network

Testcamel-spring

test:expectedMessagesEndpointUri[?options]

Creates a Mock endpoint which expects to receive all the message bodies that could be polled from the given underlying endpoint

Timercamel-core

timer:timerName[?options]

Used to generate message exchanges when a timer fires You can only consume events from this endpoint.

Twittercamel-twitter

twitter://endpoint[?options]

A twitter endpoint

Undertowcamel-undertow

undertow://host:port/context-path[?options]

HTTP server and client using the light-weight Undertow server.

Validationcamel-core (camel-spring for Camel 2.8 or older)

validation:someLocalOrRemoteResource[?options]

Validates the payload of a message using XML Schema and JAXP Validation

Velocitycamel-velocity

velocity:templateName[?options]

Generates a response using an Apache Velocity template

Vertxcamel-vertx

vertx:eventBusName

Working with the vertx event bus

VMcamel-core

vm:queueName[?options]

Asynchronous call to another endpoint in the same JVM

Weathercamel-weather

wweather://name[?options]

Polls the weather information from Open Weather Map

Websocketcamel-websocket

websocket://hostname[:port][/resourceUri][?options]

Communicating with Websocket clients

XML Security camel-xmlsecurity

xmlsecurity:<sign|verify>:name[?options]

Used to sign and verify exchanges using the XML signature specification.

XMPPcamel-xmpp

xmpp://[login@]hostname[:port][/participant][?options]

Working with XMPP and Jabber

XQuerycamel-saxon

xquery:someXQueryResource

Generates a response using an XQuery template

XSLTcamel-core (camel-spring for Camel 2.8 or older)

xslt:templateName[?options]

Generates a response using an XSLT template

Yammercamel-yammer

yammer://function[?options]

Allows you to interact with the Yammer enterprise social network

Zookeepercamel-zookeeper

zookeeper://zookeeperServer[:port][/path][?options]

Working with ZooKeeper cluster(s)

 





URI's for external components

Other projects and companies have also created Camel components to integrate additional functionality into Camel. These components may be provided under licenses that are not compatible with the Apache License, use libraries that are not compatible, etc... These components are not supported by the Camel team, but we provide links here to help users find the additional functionality.

Component / ArtifactId / URI

License

Description

ActiveMQactivemq-camel

activemq:[queue|topic:]destinationName

Apache

For JMS Messaging with Apache ActiveMQ.

ActiveMQ Brokeractivemq-camel

broker:[queue|topic:]destinationName

Apache

For internal message routing in the ActiveMQ broker using Camel.

Activitiactiviti-camel

activiti:camelProcess:serviceTask

Apache

For working with Activiti, a light-weight workflow and Business Process Management (BPM) platform which supports BPMN 2.

Bluetooth camel-bluetooth / rhiot.io

bluetooth:label

Apache

Camel Bluetooth component can retrieve information about the Bluetooth devices available within the device range.

Couchbasecamel-couchbase / camel-extra

couchbase:protocol://host[:port]/bucket

Couchbase

Working with Couchbase NoSQL document database.

Db4ocamel-db4o / camel-extra

db4o://className

GPL

For using a db4o datastore as a queue via the db4o library.

Espercamel-esper / camel-extra

esper:name

GPL

Working with the Esper Library for Event Stream Processing.

Fabric AMQmq-fabric-camel / fabric8

amq:[queue|topic:]destinationName

Apache

The amq: endpoint works exactly like the activemq: endpoint in Apache Camel; only it uses the fabric to automatically discover the broker. So there is no configuration required; it'll just work out of the box and automatically discover whatever ActiveMQ message brokers are available; with failover and load balancing.

Fabric Fabricfabric-camel / fabric8

fabric:logicalName:camelEndpointUri

Apache

The fabric: endpoint uses Fabric's discovery mechanism to expose physical sockets, HTTP endpoints, etc. into the runtime registry using a logical name so that clients can use the existing Camel Load Balancer.

Fabric Masterfabric-camel / fabric8

master:clusterName:camelEndpointUri

Apache

The master: endpoint provides a way to ensure only a single consumer in a cluster consumes from a given endpoint; with automatic failover if that JVM dies.

Framebuffer  / camel-framebuffer / rhiot.io

framebuffer://name

Apache

Camel Framebuffer component can be used to manage any Linux Framebuffer.

gpsdcamel-gpsd / rhiot.io

gpsd:label[?options]

Apache

Camel GPSD component can be used to read current GPS information from GPS devices.

Hibernatecamel-hibernate / camel-extra

hibernate://entityName

GPL

For using a database as a queue via the Hibernate library.

JBIservicemix-camel

jbi:serviceName

Apache

For JBI integration such as working with Apache ServiceMix.

JCIFScamel-jcifs / camel-extra

smb://user@server.example.com/sharename?password=secret&localWorkDirectory=/tmp

LGPL

This component provides access to remote file systems over the CIFS/SMB networking protocol by using the JCIFS library.

kura-cloudcamel-kura / rhiot.io

kura-wifi:networkInterface/ssid

Apache

Camel Kura Cloud component interacts directly with Kura CloudService.

kura-wificamel-kura / rhiot.io

kura-wifi:networkInterface/ssid

Apache

Camel Kura WiFi component can be used to retrieve the information about the WiFi access spots available within the device range.

NMRservicemix-nmr

nmr://serviceName

Apache

Integration with the Normalized Message Router BUS in ServiceMix 4.x.

OpenIMAJcamel-openimaj / rhiot.io

pi4j-gpio://gpioId[?options]

Apache

Camel OpenIMAJ component can be used to detect faces in images.

pi4j-gpiocamel-pi4j / rhiot.io

pi4j-gpio://gpioId[?options]

Apache

GPIO Component for RaspberryPi based on pi4j lib.

pi4j-i2ccamel-pi4j / rhiot.io

pi4j-i2c://busId/deviceId[?options]

Apache

i2c Component for RaspberryPi based on pi4j lib.

PubNubcamel-pubnub / rhiot.io

 pubnub://pubnubEndpointType:channel[?options]

Apache

Camel PubNub component. More information rhiot.io project.

RCodecamel-rcode / camel-extra

rcode://host[:port]/operation[?options]

LGPL

Uses Rserve to integrate Camel with the statistics environment R.

Scalatescalate-camel

scalate:templateName

Apache

Uses the given Scalate template to transform the message.

Smookscamel-smooks / camel-extra

unmarshal(edi)

GPL

For working with EDI parsing using the Smooks library. This component is deprecated as Smooks now provides Camel integration out of the box.

Spring Neo4jcamel-spring-neo4j / camel-extra

spring-neo4j:http://hostname[:port]/database[?options]

TBA

Component for producing to Neo4j datastore using the Spring Data Neo4j library.

Tinkerforgecamel-tinkerforge / rhiot.io

tinkerforge:[//hostname[:port]]/devicetype/uid/[?options]

Apache

The tinkerforge component allows interaction with Tinkerforge bricklets. It uses the standard Java bindings to connects to brickd. For more information see the rhiot.io.

VirtualBoxcamel-virtualbox / camel-extra

virtualbox:machine[?options]

GPL V2

The VitualBox component uses the webservice API that exposes VirtualBox functionality and consumes events generated by virtual machines.

Webcamcamel-webcam / rhiot.io

webcam:label[?options]

Apache

Camel Webcam component can be used to capture still images and detect motion.

ZeroMQcamel-zeromq / camel-extra

zeromq:(tcp|ipc)://hostname:port

LGPL

The ZeroMQ component allows you to consumer or produce messages using ZeroMQ.

For a full details of the individual components see the Component Appendix

Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book of the same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly for users of Camel.

Pattern Index

There now follows a list of the Enterprise Integration Patterns from the book along with examples of the various patterns using Apache Camel

Messaging Systems

Message Channel

How does one application communicate with another using messaging?

Message

How can two applications connected by a message channel exchange a piece of information?

Pipes and Filters

How can we perform complex processing on a message while maintaining independence and flexibility?

Message Router

How can you decouple individual processing steps so that messages can be passed to different filters depending on a set of conditions?

Message Translator

How can systems using different data formats communicate with each other using messaging?

Message Endpoint

How does an application connect to a messaging channel to send and receive messages?

Messaging Channels

Point to Point Channel

How can the caller be sure that exactly one receiver will receive the document or perform the call?

Publish Subscribe Channel

How can the sender broadcast an event to all interested receivers?

Dead Letter Channel

What will the messaging system do with a message it cannot deliver?

Guaranteed Delivery

How can the sender make sure that a message will be delivered, even if the messaging system fails?

Message Bus

What is an architecture that enables separate applications to work together, but in a de-coupled fashion such that applications can be easily added or removed without affecting the others?

Message Construction

Event Message

How can messaging be used to transmit events from one application to another?

Request Reply

When an application sends a message, how can it get a response from the receiver?

Correlation Identifier

How does a requestor that has received a reply know which request this is the reply for?

Return Address

How does a replier know where to send the reply?

Message Routing

Content Based Router

How do we handle a situation where the implementation of a single logical function (e.g., inventory check) is spread across multiple physical systems?

Message Filter

How can a component avoid receiving uninteresting messages?

Dynamic Router

How can you avoid the dependency of the router on all possible destinations while maintaining its efficiency?

Recipient List

How do we route a message to a list of (static or dynamically) specified recipients?

Splitter

How can we process a message if it contains multiple elements, each of which may have to be processed in a different way?

Aggregator

How do we combine the results of individual, but related messages so that they can be processed as a whole?

Resequencer

How can we get a stream of related but out-of-sequence messages back into the correct order?

Composed Message Processor

How can you maintain the overall message flow when processing a message consisting of multiple elements, each of which may require different processing?

Scatter-Gather

How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply?

Routing Slip

How do we route a message consecutively through a series of processing steps when the sequence of steps is not known at design-time and may vary for each message?

Throttler

How can I throttle messages to ensure that a specific endpoint does not get overloaded, or we don't exceed an agreed SLA with some external service?

Sampling

How can I sample one message out of many in a given period to avoid downstream route does not get overloaded?

Delayer

How can I delay the sending of a message?

Load Balancer

How can I balance load across a number of endpoints?

 

Hystrix

To use Hystrix Circuit Breaker when calling an external service.

 

Service Call

To call a remote service in a distributed system where the service is looked up from a service registry of some sorts.

Multicast

How can I route a message to a number of endpoints at the same time?

Loop

How can I repeat processing a message in a loop?

Message Transformation

Content Enricher

How do we communicate with another system if the message originator does not have all the required data items available?

Content Filter

How do you simplify dealing with a large message, when you are interested only in a few data items?

Claim Check

How can we reduce the data volume of message sent across the system without sacrificing information content?

Normalizer

How do you process messages that are semantically equivalent, but arrive in a different format?

Sort

How can I sort the body of a message?

 

Script

How do I execute a script which may not change the message?

Validate

How can I validate a message?

Messaging Endpoints

Messaging Mapper

How do you move data between domain objects and the messaging infrastructure while keeping the two independent of each other?

Event Driven Consumer

How can an application automatically consume messages as they become available?

Polling Consumer

How can an application consume a message when the application is ready?

Competing Consumers

How can a messaging client process multiple messages concurrently?

Message Dispatcher

How can multiple consumers on a single channel coordinate their message processing?

Selective Consumer

How can a message consumer select which messages it wishes to receive?

Durable Subscriber

How can a subscriber avoid missing messages while it's not listening for them?

Idempotent Consumer

How can a message receiver deal with duplicate messages?

Transactional Client

How can a client control its transactions with the messaging system?

Messaging Gateway

How do you encapsulate access to the messaging system from the rest of the application?

Service Activator

How can an application design a service to be invoked both via various messaging technologies and via non-messaging techniques?

System Management

ControlBus

How can we effectively administer a messaging system that is distributed across multiple platforms and a wide geographic area?

Detour

How can you route a message through intermediate steps to perform validation, testing or debugging functions?

Wire Tap

How do you inspect messages that travel on a point-to-point channel?

Message History

How can we effectively analyze and debug the flow of messages in a loosely coupled system?

Log

How can I log processing a message?

For a full breakdown of each pattern see the Book Pattern Appendix

CookBook

This document describes various recipes for working with Camel

Bean Integration

Camel supports the integration of beans and POJOs in a number of ways

Annotations

If a bean is defined in Spring XML or scanned using the Spring component scanning mechanism and a <camelContext> is used or a CamelBeanPostProcessor then we process a number of Camel annotations to do various things such as injecting resources or producing, consuming or routing messages.

The following annotations is supported and inject by Camel's CamelBeanPostProcessor

Annotation

Description

@EndpointInject

To inject an endpoint, see more details at POJO Producing.

@BeanInject

Camel 2.13: To inject a bean obtained from the Registry. See Bean Injection.

@PropertyInject

Camel 2.12: To inject a value using property placeholder.

@Produce

To inject a producer to send message to an endpoint. See POJO Producing.

@Consume

To inject a consumer on a method. See POJO Consuming.

See more details at:

Example

See the POJO Messaging Example for how to use the annotations for routing and messaging.

Bean Component

The Bean component allows one to invoke a particular method. Alternately the Bean component supports the creation of a proxy via ProxyHelper to a Java interface; which the implementation just sends a message containing a BeanInvocation to some Camel endpoint.

Spring Remoting

We support a Spring Remoting provider which uses Camel as the underlying transport mechanism. The nice thing about this approach is we can use any of the Camel transport Components to communicate between beans. It also means we can use Content Based Router and the other Enterprise Integration Patterns in between the beans; in particular we can use Message Translator to be able to convert what the on-the-wire messages look like in addition to adding various headers and so forth.

Bean binding

Whenever Camel invokes a bean method via one of the above methods (Bean component, Spring Remoting or POJO Consuming) then the Bean Binding mechanism is used to figure out what method to use (if it is not explicit) and how to bind the Message to the parameters possibly using the Parameter Binding Annotations or using a method name option.

Error rendering macro 'include'

org.owasp.validator.html.ScanException: java.util.EmptyStackException

Bean Binding

Bean Binding in Camel defines both which methods are invoked and also how the Message is converted into the parameters of the method when it is invoked.

Choosing the method to invoke

The binding of a Camel Message to a bean method call can occur in different ways, in the following order of importance:

  • if the message contains the header CamelBeanMethodName then that method is invoked, converting the body to the type of the method's argument.
    • From Camel 2.8 onwards you can qualify parameter types to select exactly which method to use among overloads with the same name (see below for more details).
    • From Camel 2.9 onwards you can specify parameter values directly in the method option (see below for more details).
  • you can explicitly specify the method name in the DSL or when using POJO Consuming or POJO Producing
  • if the bean has a method marked with the @Handler annotation, then that method is selected
  • if the bean can be converted to a Processor using the Type Converter mechanism, then this is used to process the message. The ActiveMQ component uses this mechanism to allow any JMS MessageListener to be invoked directly by Camel without having to write any integration glue code. You can use the same mechanism to integrate Camel into any other messaging/remoting frameworks.
  • if the body of the message can be converted to a BeanInvocation (the default payload used by the ProxyHelper) component - then that is used to invoke the method and pass its arguments
  • otherwise the type of the body is used to find a matching method; an error is thrown if a single method cannot be chosen unambiguously.
  • you can also use Exchange as the parameter itself, but then the return type must be void.
  • if the bean class is private (or package-private), interface methods will be preferred (from Camel 2.9 onwards) since Camel can't invoke class methods on such beans

In cases where Camel cannot choose a method to invoke, an AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body. 

Asynchronous processing

From Camel 2.18 onwards you can return a CompletionStage implementation (e.g. a CompletableFuture) to implement asynchronous processing.

Please be sure to properly complete the CompletionStage with the result or exception, including any timeout handling. Exchange processing would wait for completion and would not impose any timeouts automatically. It's extremely useful to monitor Inflight repository for any hanging messages.

Note that completing with "null" won't set outbody message body to null, but would keep message intact. This is useful to support methods that don't modify exchange and return CompletableFuture<Void>. To set body to null, just add Exchange method parameter and directly modify exchange messages.

Examples:

Simple asynchronous processor, modifying message body.

public CompletableFuture<String> doSomethingAsync(String body)


Composite processor that do not modify exchange

 public CompletableFuture<Void> doSomethingAsync(String body) {
     return CompletableFuture.allOf(doA(body), doB(body), doC()); 
 }


Parameter binding

When a method has been chosen for invocation, Camel will bind to the parameters of the method.

The following Camel-specific types are automatically bound:

  • org.apache.camel.Exchange
  • org.apache.camel.Message
  • org.apache.camel.CamelContext
  • org.apache.camel.TypeConverter
  • org.apache.camel.spi.Registry
  • java.lang.Exception

So, if you declare any of these types, they will be provided by Camel. Note that Exception will bind to the caught exception of the Exchange - so it's often usable if you employ a Pojo to handle, e.g., an onException route.

What is most interesting is that Camel will also try to bind the body of the Exchange to the first parameter of the method signature (albeit not of any of the types above). So if, for instance, we declare a parameter as String body, then Camel will bind the IN body to this type. Camel will also automatically convert to the type declared in the method signature.

Let's review some examples:

Below is a simple method with a body binding. Camel will bind the IN body to the body parameter and convert it to a String.

public String doSomething(String body)

In the following sample we got one of the automatically-bound types as well - for instance, a Registry that we can use to lookup beans.

public String doSomething(String body, Registry registry) 


We can use Exchange as well:

public String doSomething(String body, Exchange exchange) 


You can also have multiple types:

public String doSomething(String body, Exchange exchange, TypeConverter converter) 


And imagine you use a Pojo to handle a given custom exception InvalidOrderException - we can then bind that as well:

public String badOrder(String body, InvalidOrderException invalid) 


Notice that we can bind to it even if we use a sub type of java.lang.Exception as Camel still knows it's an exception and can bind the cause (if any exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we can use annotations to help us, or specify the binding in the method name option.
See the following sections for more detail.

Binding Annotations

You can use the Parameter Binding Annotations to customize how parameter values are created from the Message

Examples

For example, a Bean such as:

public class Bar {
    public String doSomething(String body) {
    // process the in body and return whatever you want 
    return "Bye World"; 
} 

Or the Exchange example. Notice that the return type must be void when there is only a single parameter of the type org.apache.camel.Exchange:

 public class Bar {
     public void doSomething(Exchange exchange) {
         // process the exchange 
         exchange.getIn().setBody("Bye World"); 
 }


@Handler

You can mark a method in your bean with the @Handler annotation to indicate that this method should be used for Bean Binding.
This has an advantage as you need not specify a method name in the Camel route, and therefore do not run into problems after renaming the method in an IDE that can't find all its references.

public class Bar {
    @Handler 
    public String doSomething(String body) {
        // process the in body and return whatever you want 
        return "Bye World"; 
    }
} 


Parameter binding using method option

Available as of Camel 2.9

Camel uses the following rules to determine if it's a parameter value in the method option

  • The value is either true or false which denotes a boolean value
  • The value is a numeric value such as 123 or 7
  • The value is a String enclosed with either single or double quotes
  • The value is null which denotes a null value
  • It can be evaluated using the Simple language, which means you can use, e.g., body, header.foo and other Simple tokens. Notice the tokens must be enclosed with ${ }.

Any other value is consider to be a type declaration instead - see the next section about specifying types for overloaded methods.

When invoking a Bean you can instruct Camel to invoke a specific method by providing the method name:

.bean(OrderService.class, "doSomething")

 

Here we tell Camel to invoke the doSomething method - Camel handles the parameters' binding. Now suppose the method has 2 parameters, and the 2nd parameter is a boolean where we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {
    ... 
}

 

This is now possible in Camel 2.9 onwards:

.bean(OrderService.class, "doSomething(*, true)") 


In the example above, we defined the first parameter using the wild card symbol *, which tells Camel to bind this parameter to any type, and let Camel figure this out. The 2nd parameter has a fixed value of true. Instead of the wildcard symbol we can instruct Camel to use the message body as shown:

.bean(OrderService.class, "doSomething(${body}, true)") 

 

The syntax of the parameters is using the Simple expression language so we have to use ${ } placeholders in the body to refer to the message body.

If you want to pass in a null value, then you can explicit define this in the method option as shown below:

.to("bean:orderService?method=doSomething(null, true)")


Specifying null as a parameter value instructs Camel to force passing a null value.

Besides the message body, you can pass in the message headers as a java.util.Map:

.bean(OrderService.class, "doSomethingWithHeaders(${body}, ${headers})") 

You can also pass in other fixed values besides booleans. For example, you can pass in a String and an integer:

.bean(MyBean.class, "echo('World', 5)") 


In the example above, we invoke the echo method with two parameters. The first has the content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

Having the power of the Simple language allows us to bind to message headers and other values such as:

.bean(OrderService.class, "doSomething(${body}, ${header.high})") 

You can also use the OGNL support of the Simple expression language. Now suppose the message body is an object which has a method named asXml. To invoke the asXml method we can do as follows:

.bean(OrderService.class, "doSomething(${body.asXml}, ${header.high})") 

Instead of using .bean as shown in the examples above, you may want to use .to instead as shown:

.to("bean:orderService?method=doSomething(${body.asXml}, ${header.high})") 


Using type qualifiers to select among overloaded methods

Available as of Camel 2.8

If you have a Bean with overloaded methods, you can now specify parameter types in the method name so Camel can match the method you intend to use.
Given the following bean:

 from("direct:start")
    .bean(MyBean.class, "hello(String)")
    .to("mock:result");

Then the MyBean has 2 overloaded methods with the names hello and times. So if we want to use the method which has 2 parameters we can do as follows in the Camel route:

from("direct:start")
    .bean(MyBean.class, "hello(String,String)")
    .to("mock:result"); 

We can also use a * as wildcard so we can just say we want to execute the method with 2 parameters we do

 from("direct:start")
    .bean(MyBean.class, "hello(*,*)")
    .to("mock:result");

By default Camel will match the type name using the simple name, e.g. any leading package name will be disregarded. However if you want to match using the FQN, then specify the FQN type and Camel will leverage that. So if you have a com.foo.MyOrder and you want to match against the FQN, and not the simple name "MyOrder", then follow this example:

.bean(OrderService.class, "doSomething(com.foo.MyOrder)")


Camel currently only supports either specifying parameter binding or type per parameter in the method name option. You cannot specify both at the same time, such as

 doSomething(com.foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

Error rendering macro 'include'

org.owasp.validator.html.ScanException: java.util.EmptyStackException

Parameter Binding Annotations

camel-core

The annotations below are all part of camel-core and thus does not require camel-spring or Spring. These annotations can be used with the Bean component or when invoking beans in the DSL

Annotations can be used to define an Expression or to extract various headers, properties or payloads from a Message when invoking a bean method (see Bean Integration for more detail of how to invoke bean methods) together with being useful to help disambiguate which method to invoke.

If no annotations are used then Camel assumes that a single parameter is the body of the message. Camel will then use the Type Converter mechanism to convert from the expression value to the actual type of the parameter.

The core annotations are as follows

Annotation

Meaning

Parameter

@Body

To bind to an inbound message body

 

@ExchangeException

To bind to an Exception set on the exchange

 

@Header

To bind to an inbound message header

String name of the header

@Headers

To bind to the Map of the inbound message headers

 

@OutHeaders

To bind to the Map of the outbound message headers

 

@Property

To bind to a named property on the exchange

String name of the property

@Properties

To bind to the property map on the exchange

 

@Handler

Not part as a type parameter but stated in this table anyway to spread the good word that we have this annotation in Camel now. See more at Bean Binding.

 

The follow annotations @Headers, @OutHeaders and @Properties binds to the backing java.util.Map so you can alter the content of these maps directly, for instance using the put method to add a new entry. See the OrderService class at Exception Clause for such an example. You can use @Header("myHeader") and @Property("myProperty") to access the backing java.util.Map.

Example

In this example below we have a @Consume consumer (like message driven) that consumes JMS messages from the activemq queue. We use the @Header and @Body parameter binding annotations to bind from the JMSMessage to the method parameters.

public class Foo {
	
    @Consume(uri = "activemq:my.queue")
    public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body String body) {
		// process the inbound message here
    }

}

In the above Camel will extract the value of Message.getJMSCorrelationID(), then using the Type Converter to adapt the value to the type of the parameter if required - it will inject the parameter value for the correlationID parameter. Then the payload of the message will be converted to a String and injected into the body parameter.

You don't necessarily need to use the @Consume annotation if you don't want to as you could also make use of the Camel DSL to route to the bean's method as well.

Using the DSL to invoke the bean method

Here is another example which does not use POJO Consuming annotations but instead uses the DSL to route messages to the bean method

public class Foo {
    public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body String body) {
		// process the inbound message here
    }

}

The routing DSL then looks like this

from("activemq:someQueue").
  to("bean:myBean");

Here myBean would be looked up in the Registry (such as JNDI or the Spring ApplicationContext), then the body of the message would be used to try figure out what method to call.

If you want to be explicit you can use

from("activemq:someQueue").
  to("bean:myBean?methodName=doSomething");

And here we have a nifty example for you to show some great power in Camel. You can mix and match the annotations with the normal parameters, so we can have this example with annotations and the Exchange also:

    public void doSomething(@Header("user") String user, @Body String body, Exchange exchange) {
        exchange.getIn().setBody(body + "MyBean");
    }

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method parameters when using Bean Integration. For example you can use any of these annotations:

Annotation

Description

@Bean

Inject a Bean expression

@BeanShell

Inject a BeanShell expression

@Constant

Inject a Constant expression

@EL

Inject an EL expression

@Groovy

Inject a Groovy expression

@Header

Inject a Header expression

@JavaScript

Inject a JavaScript expression

@MVEL

Inject a MVEL expression

@OGNL

Inject an OGNL expression

@PHP

Inject a PHP expression

@Python

Inject a Python expression

@Ruby

Inject a Ruby expression

@Simple

Inject an Simple expression

@XPath

Inject an XPath expression

@XQuery

Inject an XQuery expression

Example:

public class Foo {
	
    @MessageDriven(uri = "activemq:my.queue")
    public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body String body) {
		// process the inbound message here
    }
}

Advanced example using @Bean

And an example of using the the @Bean binding annotation, where you can use a POJO where you can do whatever java code you like:

public class Foo {
	
    @MessageDriven(uri = "activemq:my.queue")
    public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID, @Body String body) {
		// process the inbound message here
    }
}

And then we can have a spring bean with the id myCorrelationIdGenerator where we can compute the id.

public class MyIdGenerator {

    private UserManager userManager;

    public String generate(@Header(name = "user") String user, @Body String payload) throws Exception {
       User user = userManager.lookupUser(user);
       String userId = user.getPrimaryId();
       String id = userId + generateHashCodeForPayload(payload);
       return id;
   }
}

The POJO MyIdGenerator has one public method that accepts two parameters. However we have also annotated this one with the @Header and @Body annotation to help Camel know what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator. But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

    public static int generate()  {
       // generate a unique id
       return 123;
   }
}

And finally we just need to remember to have our bean registered in the Spring Registry:

   <bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User object has methods to get some user information. We want to use Groovy to inject an expression that extracts and concats the fullname of the user into the fullName parameter.

    public void doSomething(@Groovy("$request.header['user'].firstName $request.header['user'].familyName) String fullName, @Body String body) {
		// process the inbound message here
    }

Groovy supports GStrings that is like a template where we can insert $ placeholders that will be evaluated by Groovy.

@Consume

To consume a message you use the @Consume annotation to mark a particular method of a bean as being a consumer method. The uri of the annotation defines the Camel Endpoint to consume from.

e.g. lets invoke the onCheese() method with the String body of the inbound JMS message from ActiveMQ on the cheese queue; this will use the Type Converter to convert the JMS ObjectMessage or BytesMessage to a String - or just use a TextMessage from JMS

public class Foo {

  @Consume(uri="activemq:cheese")
  public void onCheese(String name) {
    ...
  }
}

The Bean Binding is then used to convert the inbound Message to the parameter list used to invoke the method .

What this does is basically create a route that looks kinda like this

from(uri).bean(theBean, "methodName");

When using more than one CamelContext

When you use more than 1 CamelContext you might end up with each of them creating a POJO Consuming; therefore use the option context on @Consume that allows you to specify which CamelContext id/name you want it to apply for.

Using context option to apply only a certain CamelContext

See the warning above.

You can use the context option to specify which CamelContext the consumer should only apply for. For example:

  @Consume(uri="activemq:cheese", context="camel-1")
  public void onCheese(String name) {

The consumer above will only be created for the CamelContext that have the context id = camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

Using an explicit route

If you want to invoke a bean method from many different endpoints or within different complex routes in different circumstances you can just use the normal routing DSL or the Spring XML configuration file.

For example

from(uri).beanRef("myBean", "methodName");

which will then look up in the Registry and find the bean and invoke the given bean name. (You can omit the method name and have Camel figure out the right method based on the method annotations and body type).

Use the Bean endpoint

You can always use the bean endpoint

from(uri).to("bean:myBean?method=methodName");

Using a property to define the endpoint

Available as of Camel 2.11

The following annotations @Consume, @Produce, @EndpointInject, now offers a property attribute you can use to define the endpoint as a property on the bean. Then Camel will use the getter method to access the property.

This applies for them all

The explanation below applies for all the three annotations, eg @Consume, @Produce, and @EndpointInject

For example

public class MyService {
  private String serviceEndpoint;
  
  public void setServiceEndpoint(String uri) {
     this.serviceEndpoint = uri;
  }

  public String getServiceEndpoint() {
     return serviceEndpoint
  }

  @Consume(property = "serviceEndpoint")
  public void onService(String input) {
     ...
  }
}

The bean MyService has a property named serviceEndpoint which has getter/setter for the property. Now we want to use the bean for POJO Consuming, and hence why we use @Consume in the onService method. Notice how we use the property = "serviceEndpoint to configure the property that has the endpoint url.

If you define the bean in Spring XML or Blueprint, then you can configure the property as follows:

<bean id="myService" class="com.foo.MyService">
  <property name="serviceEndpoint" value="activemq:queue:foo"/>
</bean>

This allows you to configure the bean using any standard IoC style.

Camel offers a naming convention which allows you to not have to explicit name the property.
Camel uses this algorithm to find the getter method. The method must be a getXXX method.

1. Use the property name if explicit given
2. If no property name was configured, then use the method name
3. Try to get the property with name*Endpoint* (eg with Endpoint as postfix)
4. Try to get the property with the name as is (eg no postfix or postfix)
5. If the property name starts with on then omit that, and try step 3 and 4 again.

So in the example above, we could have defined the @Consume annotation as

  @Consume(property = "service")
  public void onService(String input) {

Now the property is named 'service' which then would match step 3 from the algorithm, and have Camel invoke the getServiceEndpoint method.

We could also have omitted the property attribute, to make it implicit

  @Consume
  public void onService(String input) {

Now Camel matches step 5, and loses the prefix on in the name, and looks for 'service' as the property. And because there is a getServiceEndpoint method, Camel will use that.

Which approach to use?

Using the @Consume annotations are simpler when you are creating a simple route with a single well defined input URI.

However if you require more complex routes or the same bean method needs to be invoked from many places then please use the routing DSL as shown above.

There are two different ways to send messages to any Camel Endpoint from a POJO

@EndpointInject

To allow sending of messages from POJOs you can use the @EndpointInject annotation. This will inject a ProducerTemplate so that the bean can participate in message exchanges.

Example: send a message to the foo.bar ActiveMQ queue:

public class Foo {
  @EndpointInject(uri="activemq:foo.bar")
  ProducerTemplate producer;

  public void doSomething() {
    if (whatever) {
      producer.sendBody("<hello>world!</hello>");
    }
  }
}

The downside of this is that your code is now dependent on a Camel API, the ProducerTemplate. The next section describes how to remove this dependency.

See POJO Consuming for how to use a property on the bean as endpoint configuration, e.g., using the property attribute on @Produce, @EndpointInject.

Hiding the Camel APIs From Your Code Using @Produce

We recommend Hiding Middleware APIs from your application code so the next option might be more suitable. You can add the @Produce annotation to an injection point (a field or property setter) using a ProducerTemplate or using some interface you use in your business logic. Example:

public interface MyListener {
    String sayHello(String name);
}

public class MyBean {
    @Produce(uri = "activemq:foo")
    protected MyListener producer;

    public void doSomething() {
        // lets send a message
        String response = producer.sayHello("James");
    }
}

Here Camel will automatically inject a smart client side proxy at the @Produce annotation - an instance of the MyListener instance. When we invoke methods on this interface the method call is turned into an object and using the Camel Spring Remoting mechanism it is sent to the endpoint - in this case the ActiveMQ endpoint to queue foo; then the caller blocks for a response.

If you want to make asynchronous message sends then use an @InOnly annotation on the injection point.

@RecipientList Annotation

We support the use of @RecipientList on a bean method to easily create a dynamic Recipient List using a Java method.

Simple Example using @Consume and @RecipientList

package com.acme.foo;

public class RouterBean {

    @Consume(uri = "activemq:foo")
    @RecipientList
    public String[] route(String body) {
        return new String[]{"activemq:bar", "activemq:whatnot"};
    }
}

For example if the above bean is configured in Spring when using a <camelContext> element as follows

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="
       http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
       http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
    ">

  <camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>

  <bean id="myRecipientList" class="com.acme.foo.RouterBean"/>

</beans>

then a route will be created consuming from the foo queue on the ActiveMQ component which when a message is received the message will be forwarded to the endpoints defined by the result of this method call - namely the bar and whatnot queues.

How it works

The return value of the @RecipientList method is converted to either a java.util.Collection / java.util.Iterator or array of objects where each element is converted to an Endpoint or a String, or if you are only going to route to a single endpoint then just return either an Endpoint object or an object that can be converted to a String. So the following methods are all valid

@RecipientList 
public String[] route(String body) { ... }

@RecipientList 
public List<String> route(String body) { ... }

@RecipientList 
public Endpoint route(String body) { ... }

@RecipientList 
public Endpoint[] route(String body) { ... }

@RecipientList 
public Collection<Endpoint> route(String body) { ... }

@RecipientList 
public URI route(String body) { ... }

@RecipientList 
public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to that endpoint.

You can then use whatever Java code you wish to figure out what endpoints to route to; for example you can use the Bean Binding annotations to inject parts of the message body or headers or use Expression values on the message.

More Complex Example Using DSL

In this example we will use more complex Bean Binding, plus we will use a separate route to invoke the Recipient List

public class RouterBean2 {

    @RecipientList
    public String route(@Header("customerID") String custID String body) {
    	if (custID == null)  return null;
        return "activemq:Customers.Orders." + custID;
    }
}

public class MyRouteBuilder extends RouteBuilder {
    protected void configure() {
        from("activemq:Orders.Incoming").recipientList(bean("myRouterBean", "route"));
    }
}

Notice how we are injecting some headers or expressions and using them to determine the recipients using Recipient List EIP.
See the Bean Integration for more details.

Error rendering macro 'include'

null

When writing software these days, its important to try and decouple as much middleware code from your business logic as possible.

This provides a number of benefits...

  • you can choose the right middleware solution for your deployment and switch at any time
  • you don't have to spend a large amount of time learning the specifics of any particular technology, whether its JMS or JavaSpace or Hibernate or JPA or iBatis whatever

For example if you want to implement some kind of message passing, remoting, reliable load balancing or asynchronous processing in your application we recommend you use Camel annotations to bind your services and business logic to Camel Components which means you can then easily switch between things like

  • in JVM messaging with SEDA
  • using JMS via ActiveMQ or other JMS providers for reliable load balancing, grid or publish and subscribe
  • for low volume, but easier administration since you're probably already using a database you could use
  • use JavaSpace

How to decouple from middleware APIs

The best approach when using remoting is to use Spring Remoting which can then use any messaging or remoting technology under the covers. When using Camel's implementation you can then use any of the Camel Components along with any of the Enterprise Integration Patterns.

Another approach is to bind Java beans to Camel endpoints via the Bean Integration. For example using POJO Consuming and POJO Producing you can avoid using any Camel APIs to decouple your code both from middleware APIs and Camel APIs! (smile)

Visualisation

This functionality is deprecated and to be removed in future Camel releases.

 

Camel supports the visualisation of your Enterprise Integration Patterns using the GraphViz DOT files which can either be rendered directly via a suitable GraphViz tool or turned into HTML, PNG or SVG files via the Camel Maven Plugin.

Here is a typical example of the kind of thing we can generate

If you click on the actual generated htmlyou will see that you can navigate from an EIP node to its pattern page, along with getting hover-over tool tips ec.

How to generate

See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users

If you are using OS X then you can open the DOT file using graphviz which will then automatically re-render if it changes, so you end up with a real time graphical representation of the topic and queue hierarchies!

Also if you want to edit the layout a little before adding it to a wiki to distribute to your team, open the DOT file with OmniGraffle then just edit away (smile)

Error rendering macro 'include'

null

Error rendering macro 'include'

null

Mock Component

Testing Summary Include

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock in that it allows declarative expectations to be created on any Mock endpoint before a test begins. Then the test is run, which typically fires messages to one or more endpoints, and finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:

  • The correct number of messages are received on each endpoint,
  • The correct payloads are received, in the right order,
  • Messages arrive on an endpoint in order, using some Expression to create an order testing function,
  • Messages arrive match some kind of Predicate such as that specific headers have certain values, or that parts of the messages match some predicate, such as by evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second endpoint to provide the list of expected message bodies and automatically sets up the Mock endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its assertions from some sample messages in a File or database, for example.

Mock endpoints keep received Exchanges in memory indefinitely

Remember that Mock is designed for testing. When you add Mock endpoints to a route, each Exchange sent to the endpoint will be stored (to allow for later validation) in memory until explicitly reset or the JVM is restarted. If you are sending high volume and/or large messages, this may cause excessive memory use. If your goal is to test deployable routes inline, consider using NotifyBuilder or AdviceWith in your tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new options retainFirst, and retainLast that can be used to limit the number of messages the Mock endpoints keep in memory.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format, ?option=value&option=value&...

Options

confluenceTableSmall

Option

Default

Description

reportGroup

null

A size to use a throughput logger for reporting

retainFirst

 

Camel 2.10: To only keep first X number of messages in memory.

retainLast

 

Camel 2.10: To only keep last X number of messages in memory.

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we set an expectation, and then, after the test has run, we assert that our expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class); resultEndpoint.expectedMessageCount(2); // send some messages ... // now lets assert that the mock:foo endpoint received 2 messages resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is invoked. This can be configured by setting the setResultWaitTime(millis) method.

Using assertPeriod

Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue from the assertIsSatisfied method. That means if a new message arrives on the mock endpoint, just a bit later, that arrival will not affect the outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then you can do that by setting the setAssertPeriod method, for example:

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class); resultEndpoint.setAssertPeriod(5000); resultEndpoint.expectedMessageCount(2); // send some messages ... // now lets assert that the mock:foo endpoint received 2 messages resultEndpoint.assertIsSatisfied();

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set expectations. The main methods are as follows:

confluenceTableSmall

Method

Description

expectedMessageCount(int)

To define the expected message count on the endpoint.

expectedMinimumMessageCount(int)

To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...)

To define the expected bodies that should be received (in order).

expectedHeaderReceived(...)

To define the expected header that should be received

expectsAscending(Expression)

To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsDescending(Expression)

To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsNoDuplicates(Expression)

To add an expectation that no duplicate messages are received; using an Expression to calculate a unique identifier for each message. This could be something like the JMSMessageID if using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody", "thirdMessageBody");

Adding expectations to specific messages

In addition, you can use the message(int messageIndex) method to add assertions about a specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-based indexing like java.util.List), you can use the following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests.

Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

How it works

Important: The endpoints are still in action. What happens differently is that a Mock endpoint is injected and receives the message first and then delegates the message to the target endpoint. You can view this as a kind of intercept and delegate or endpoint listener.

Suppose you have the given route below:

{snippet:id=route|title=Route|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/interceptor/AdviceWithMockEndpointsTest.java}

You can then use the adviceWith feature in Camel to mock all the endpoints in a given route from your unit test, as shown below:

{snippet:id=e1|title=adviceWith mocking all endpoints|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/interceptor/AdviceWithMockEndpointsTest.java}

Notice that the mock endpoints is given the uri mock:<endpoint>, for example mock:direct:foo. Camel logs at INFO level the endpoints being mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo] Mocked endpoints are without parameters

Endpoints which are mocked will have their parameters stripped off. For example the endpoint "log:foo?showAll=true" will be mocked to the following endpoint "mock:log:foo". Notice the parameters have been removed.

Its also possible to only mock certain endpoints using a pattern. For example to mock all log endpoints you do as shown:

{snippet:id=e2|lang=java|title=adviceWith mocking only log endpoints using a pattern|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/interceptor/AdviceWithMockEndpointsTest.java}

The pattern supported can be a wildcard or a regular expression. See more details about this at Intercept as its the same matching function used by Camel.

Mind that mocking endpoints causes the messages to be copied when they arrive on the mock.
That means Camel will use more memory. This may not be suitable when you send in a lot of messages.

Mocking existing endpoints using the camel-test component

Instead of using the adviceWith to instruct Camel to mock endpoints, you can easily enable this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

{snippet:id=e1|lang=java|title=isMockEndpoints using camel-test kit|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/IsMockEndpointsJUnit4Test.java}

Mocking existing endpoints with XML DSL

If you do not use the camel-test component for unit testing (as shown above) you can use a different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then include the intended XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:

{snippet:id=e1|lang=xml|title=camel-route.xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/camel-route.xml}

Then we create a new XML file as follows, where we include the camel-route.xml file and define a spring bean with the class org.apache.camel.impl.InterceptSendToMockEndpointStrategy which tells Camel to mock all endpoints:

{snippet:id=e1|lang=xml|title=test-camel-route.xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml}

Then in your unit test you load the new XML file (test-camel-route.xml) instead of camel-route.xml.

To only mock all Log endpoints you can define the pattern in the constructor for the bean:

xml<bean id="mockAllEndpoints" class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"> <constructor-arg index="0" value="log*"/> </bean>

Mocking endpoints and skip sending to original endpoint

Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain endpoints. So the message is detoured and send to the mock endpoint only. From Camel 2.10 onwards you can now use the mockEndpointsAndSkip method using AdviceWith or the Test Kit. The example below will skip sending to the two endpoints "direct:foo", and "direct:bar".

{snippet:id=e1|lang=java|title=adviceWith mock and skip sending to endpoints|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/interceptor/AdviceWithMockMultipleEndpointsWithSkipTest.java}

The same example using the Test Kit

{snippet:id=e1|lang=java|title=isMockEndpointsAndSkip using camel-test kit|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/IsMockEndpointsAndSkipJUnit4Test.java}

Limiting the number of messages to keep

Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and retainLast that can be used to specify to only keep N'th of the first and/or last Exchanges.

For example in the code below, we only want to retain a copy of the first 5 and last 5 Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data"); mock.setRetainFirst(5); mock.setRetainLast(5); mock.expectedMessageCount(2000); ... mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges() methods on the MockEndpoint will return only the retained copies of the Exchanges. So in the example above, the list will contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which expectation methods you can use. For example the expectedXXX methods that work on message bodies, headers, etc. will only operate on the retained messages. In the example above they can test only the expectations on the 10 retained messages.

Testing with arrival times

Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock. But it also provides foundation to know the time interval between the previous and next message arrived on the mock. You can use this to set expectations using the arrives DSL on the Mock endpoint.

For example to say that the first message should arrive between 0-2 seconds before the next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive no later than 0-2 seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it should be between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the gap between them should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext(); time units

In the example above we use seconds as the time unit, but Camel offers milliseconds, and minutes as well.

Endpoint See Also

Testing

Testing is a crucial activity in any piece of software development or integration. Typically Camel Riders use various different technologies wired together in a variety of patterns with different expression languages together with different forms of Bean Integration and Dependency Injection so its very easy for things to go wrong! (smile) . Testing is the crucial weapon to ensure that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework you use (JUnit 3.x (deprecated), 4.x, or TestNG). However the Camel project has tried to make the testing of Camel as easy and powerful as possible so we have introduced the following features.

Testing Mechanisms

The following mechanisms are supported:

Name

Component

Description

Camel Test

camel-test

Is a standalone Java library letting you easily create Camel test cases using a single Java class for all your configuration and routing without using CDI, Spring or Guice for Dependency Injection which does not require an in-depth knowledge of Spring + Spring Test or Guice.  Supports JUnit 3.x (deprecated) and JUnit 4.x based tests.

CDI Testingcamel-test-cdi

Provides a JUnit 4 runner that bootstraps a test environment using CDI so that you don't have to be familiar with any CDI testing frameworks and can concentrate on the testing logic of your Camel CDI applications. Testing frameworks like Arquillian or PAX Exam, can be used for more advanced test cases, where you need to configure your system under test in a very fine-grained way or target specific CDI containers.

Spring Testing

camel-test-spring

Supports JUnit 3.x (deprecated) or JUnit 4.x based tests that bootstrap a test environment using Spring without needing to be familiar with Spring Test. The plain JUnit 3.x/4.x based tests work very similar to the test support classes in camel-test.

Also supports Spring Test based tests that use the declarative style of test configuration and injection common in Spring Test. The Spring Test based tests provide feature parity with the plain JUnit 3.x/4.x based testing approach.

Note: camel-test-spring is a new component from Camel 2.10. For older Camel release use camel-test which has built-in Spring Testing.

Blueprint Testing

camel-test-blueprint

Camel 2.10: Provides the ability to do unit testing on blueprint configurations

Guice

camel-guice

Deprecated

Uses Guice to dependency inject your test classes

Camel TestNG

camel-testng

Deprecated

Supports plain TestNG based tests with or without CDISpring or Guice for Dependency Injection which does not require an in-depth knowledge of CDI, Spring + Spring Test or Guice.  

From Camel 2.10: this component supports Spring Test based tests that use the declarative style of test configuration and injection common in Spring Test and described in more detail under Spring Testing.

In all approaches the test classes look pretty much the same in that they all reuse the Camel binding and injection annotations.

Camel Test Example

Here is the Camel Test example:{snippet:lang=java|id=example|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java}Notice how it derives from the Camel helper class CamelTestSupport but has no CDI, Spring or Guice dependency injection configuration but instead overrides the createRouteBuilder() method.

CDI Test Example

Here is the CDI Testing example:{snippet:lang=java|id=example|url=camel/trunk/components/camel-test-cdi/src/test/java/org/apache/camel/test/cdi/FilterTest.java}You can find more testing patterns illustrated in the camel-example-cdi-test example and the test classes that come with it.

Spring Test with XML Config Example

Here is the Spring Testing example using XML Config:{snippet:lang=java|id=example|url=camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java}Notice that we use @DirtiesContext on the test methods to force Spring Testing to automatically reload the CamelContext after each test method - this ensures that the tests don't clash with each other, e.g., one test method sending to an endpoint that is then reused in another test method.

Also note the use of @ContextConfiguration to indicate that by default we should look for the FilterTest-context.xml on the classpath to configure the test case which looks like this:{snippet:lang=xml|id=example|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml}

Spring Test with Java Config Example

Here is the Spring Testing example using Java Config.

For more information see Spring Java Config.{snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java}This is similar to the XML Config example above except that there is no XML file and instead the nested ContextConfig class does all of the configuration; so your entire test case is contained in a single Java class. We currently have to reference by class name this class in the @ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive from SingleRouteCamelConfiguration which is a helper Spring Java Config class which will configure the CamelContext for us and then register the RouteBuilder we create.

Since Camel 2.11.0 you can use the CamelSpringJUnit4ClassRunner with CamelSpringDelegatingTestContextLoader like example using Java Config with CamelSpringJUnit4ClassRunner:{snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java}

Spring Test with XML Config and Declarative Configuration Example

Here is a Camel test support enhanced Spring Testing example using XML Config and pure Spring Test based configuration of the Camel Context:{snippet:lang=java|id=e1|url=camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java}Notice how a custom test runner is used with the @RunWith annotation to support the features of CamelTestSupport through annotations on the test class. See Spring Testing for a list of annotations you can use in your tests.

Blueprint Test

Here is the Blueprint Testing example using XML Config:{snippet:lang=java|id=example|url=camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java}Also notice the use of getBlueprintDescriptors to indicate that by default we should look for the camelContext.xml in the package to configure the test case which looks like this:{snippet:lang=xml|id=example|url=camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml}

Testing Endpoints

Camel provides a number of endpoints which can make testing easier.

Name

Description

DataSet

For load & soak testing this endpoint provides a way to create huge numbers of messages for sending to Components and asserting that they are consumed correctly

Mock

For testing routes and mediation rules using mocks and allowing assertions to be added to an endpoint

Test

Creates a Mock endpoint which expects to receive all the message bodies that could be polled from the given underlying endpoint

The main endpoint is the Mock endpoint which allows expectations to be added to different endpoints; you can then run your tests and assert that your expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for example to unit test a transformation route rather than performing a full integration test) then the following endpoints can be useful.

Name

Description

Direct

Direct invocation of the consumer from the producer so that single threaded (non-SEDA) in VM invocation is performed which can be useful to mock out physical transports

SEDA

Delivers messages asynchronously to consumers via a java.util.concurrent.BlockingQueue which is good for testing asynchronous transports

Stub

Works like SEDA but does not validate the endpoint URI, which makes stubbing much easier.

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will not use Mock etc. For example you may have a production ready route which you want to test with some 3rd party API which sends messages into this route.

Name

Description

NotifyBuilder

Allows you to be notified when a certain condition has occurred. For example when the route has completed five messages. You can build complex expressions to match your criteria when to be notified.

AdviceWith

Allows you to advice or enhance an existing route using a RouteBuilder style. For example you can add interceptors to intercept sending outgoing messages to assert those messages are as expected.

Camel Test

As a simple alternative to using CDI TestingSpring Testing or Guice the camel-test module was introduced so you can perform powerful Testing of your Enterprise Integration Patterns easily.

JUnit or TestNG

The camel-test JAR is using JUnit. There is an alternative camel-testng JAR (from Camel 2.8) using the TestNG test framework.

Adding to your pom.xml

To get started using Camel Test you will need to add an entry to your pom.xml:

JUnit

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-test</artifactId> <version>${camel-version}</version> <scope>test</scope> </dependency>

TestNG

Available as of Camel 2.8

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-testng</artifactId> <version>${camel-version}</version> <scope>test</scope> </dependency>

You might also want to add slf4j and log4j to ensure nice logging messages (and maybe adding a log4j.properties file into your src/test/resources directory).

xml<dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <scope>test</scope> </dependency>

Writing your test

You firstly need to derive from the class CamelTestSupport (org.apache.camel.test.CamelTestSupport, org.apache.camel.test.junit4.CamelTestSupport, or org.apache.camel.testng.CamelTestSupport for JUnit 3.x, JUnit 4.x, and TestNG, respectively) and typically you will need to override the createRouteBuilder() or createRouteBuilders() method to create routes to be tested.

Here is an example.{snippet:lang=java|id=example|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java}Note: how you can use the various Camel binding and injection annotations to inject individual Endpoint objects - particularly the Mock endpoints which are very useful for Testing. Also you can inject producer objects such as ProducerTemplate or some application code interface for sending messages or invoking services.

Features Provided by CamelTestSupport

The various CamelTestSupport classes provide a standard set of behaviors relating to the CamelContext used to host the route(s) under test.  The classes provide a number of methods that allow a test to alter the configuration of the CamelContext used.  The following table describes the available customization methods and the default behavior of tests that are built from a CamelTestSupport class.

Method Name

Description

Default Behavior

boolean isUseRouteBuilder()

If the route builders returned from either createRouteBuilder() or createRouteBuilders() should be added to the CamelContext for the test to be started.

Returns true

createRouteBuilder() or createRouteBuilders() are invoked and the CamelContext is started automatically.

boolean isUseAdviceWith()

If the CamelContext use in the test should be automatically started before test methods are invoked.


Override when using advice with and return true.  This helps in knowing the adviceWith() is to be used, and the CamelContext will not be started before the advice with takes place. This delay helps by ensuring the advice with has been property setup before the CamelContext is started.

Its important to start the CamelContext manually from the unit test after you are done doing all the advice with.

Returns false

The CamelContext is started automatically before test methods are invoked.

boolean isCreateCamelContextPerClass()

See Setup CamelContext once per class, or per every test method.

The CamelContext and routes are recreated for each test method.

String isMockEndpoints()

Triggers the auto-mocking of endpoints whose URIs match the provided filter.  The default filter is null which disables this feature.  

Return "*"  to match all endpoints.  

See org.apache.camel.impl.InterceptSendToMockEndpointStrategy for more details on the registration of the mock endpoints.

Disabled

boolean isUseDebugger()

If this method returns true, the methods:

  • debugBefore(Exchange exchange, Processor processor, ProcessorDefinition<?> definition, String id, String label)
  • debugAfter(Exchange exchange, Processor processor, ProcessorDefinition<?> definition, String id, String label, long timeTaken)

are invoked for each processor in the registered routes.

Disabled

The methods are not invoked during the test.

int getShutdownTimeout()

Returns the number of seconds that Camel should wait for graceful shutdown.  

Useful for decreasing test times when a message is still in flight at the end of the test.

10 seconds

boolean useJmx()

If JMX should be disabled on the CamelContext used in the test.

JMX is disabled

JndiRegistry createRegistry()

Provides a hook for adding objects into the registry.  Override this method to bind objects to the registry before test methods are invoked.

An empty registry is initialized

useOverridePropertiesWithPropertiesComponent

Camel 2.10: Allows to add/override properties when Using PropertyPlaceholder in Camel.

null

ignoreMissingLocationWithPropertiesComponent

Camel 2.10: Allows to control if Camel should ignore missing locations for properties.

null

boolean isDumpRouteCoverage

Camel 2.16: If enabled, then Camel will dump all route coverage statistics into XML files in the target/camel-route-coverage directory. These XML files contains information about "route coverage" of all the routes that was used during the unit test. This allows tooling to inspect these XML files and generate nice route coverage reports.

Disabled

JNDI

Camel uses a Registry to allow you to configure Component or Endpoint instances or Beans used in your routes. If you are not using Spring or OSGi then JNDI is used as the default registry implementation.

So you will also need to create a jndi.properties file in your src/test/resources directory so that there is a default registry available to initialize the CamelContext.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

Dynamically Assigning Ports

Available as of Camel 2.7

Tests that use port numbers will fail if that port is already on use. AvailablePortFinder provides methods for finding unused port numbers at run time.

java// Get the next available port number starting from the default starting port of 1024 int port1 = AvailablePortFinder.getNextAvailable(); /* * Get another port. Note that just getting a port number does not reserve it so * we look starting one past the last port number we got. */ int port2 = AvailablePortFinder.getNextAvailable(port1 + 1);

Setup CamelContext once per class, or per every test method

Available as of Camel 2.8

The Camel Test kit will by default setup and shutdown CamelContext per every test method in your test class. So for example if you have 3 test methods, then CamelContext is started and shutdown after each test, that is 3 times.

TestNG

This feature is also supported in camel-testng

Beware

When using this the CamelContext will keep state between tests, so have that in mind. So if your unit tests start to fail for no apparent reason, it could be due this fact. So use this feature with a bit of care.

You may want to do this once, to share the CamelContext between test methods, to speedup unit testing. This requires the use of JUnit 4! In your unit test method you have to extend the org.apache.camel.test.junit4.CamelTestSupport or the org.apache.camel.test.junit4.CamelSpringTestSupport test class and override the isCreateCamelContextPerClass method and return true as shown in the following example:{snippet:id=example|lang=java|title=Setup CamelContext once per class|url=camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterCreateCamelContextPerClassTest.java}

See Also

 

Spring Testing

Testing is a crucial part of any development or integration work. The Spring Framework offers a number of features that makes it easy to test while using Spring for Inversion of Control which works with JUnit 3.x, JUnit 4.x, and TestNG.

We can use Spring for IoC and the Camel Mock and Test endpoints to create sophisticated integration/unit tests that are easy to run and debug inside your IDE.  There are three supported approaches for testing with Spring in Camel.

Name

Testing Frameworks Supported

Description

Required Camel Test Dependencies

CamelSpringTestSupport

  • JUnit 3.x (deprecated)
  • JUnit 4.x
  • TestNG - Camel 2.8

Provided by:

  • org.apache.camel.test.CamelSpringTestSupport
  • org.apache.camel.test.junit4.CamelSpringTestSupport
  • org.apache.camel.testng.CamelSpringTestSupport

These base classes provide feature parity with the simple CamelTestSupport classes from Camel Test but do not support Spring annotations on the test class such as @Autowired@DirtiesContext, and @ContextConfiguration.

  • JUnit 3.x (deprecated) - camel-test-spring
  • JUnit 4.x - camel-test-spring
  • TestNG - camel-test-ng

Plain Spring Test

  • JUnit 3.x
  • JUnit 4.x
  • TestNG

Either extend the abstract base classes:

  • org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests
  • org.springframework.test.context.junit38.AbstractJUnit4SpringContextTests
  • etc.

provided in Spring Test or use the Spring Test JUnit4 runner.  

These approaches support both the Camel annotations and Spring annotations. However, they do NOT have feature parity with:

  • org.apache.camel.test.CamelTestSupport
  • org.apache.camel.test.junit4.CamelTestSupport
  • org.apache.camel.testng.CamelSpringTestSupport
  • JUnit 3.x (deprecated) - None
  • JUnit 4.x - None
  • TestNG - None

Camel Enhanced Spring Test

  • JUnit 4.x - Camel 2.10
  • TestNG - Camel 2.10

Either:

  • use the org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunner runner with the @RunWith annotation,
  • or extend org.apache.camel.testng.AbstractCamelTestNGSpringContextTests to enable feature parity with org.apache.camel.test.CamelTestSupport and org.apache.camel.test.junit4.CamelTestSupport. These classes support the full suite of Spring Test annotations such as @Autowired@DirtiesContext, and @ContextConfiguration.

JUnit 3.x (deprecated) - camel-test-spring

JUnit 4.x - camel-test-spring

TestNG - camel-test-ng

CamelSpringTestSupport

The following Spring test support classes:

  • org.apache.camel.test.CamelSpringTestSupport
  • org.apache.camel.test.junit4.CamelSpringTestSupport, and
  • org.apache.camel.testng.CamelSpringTestSupport

extend their non-Spring aware counterparts:

  • org.apache.camel.test.CamelTestSupport
  • org.apache.camel.test.junit4.CamelTestSupport, and 
  • org.apache.camel.testng.CamelTestSupport

and deliver integration with Spring into your test classes.  

Instead of instantiating the CamelContext and routes programmatically, these classes rely on a Spring context to wire the needed components together.  If your test extends one of these classes, you must provide the Spring context by implementing the following method.

javaprotected abstract AbstractApplicationContext createApplicationContext();

You are responsible for the instantiation of the Spring context in the method implementation.  All of the features available in the non-Spring aware counterparts from Camel Test are available in your test.

Plain Spring Test

In this approach, your test classes directly inherit from the Spring Test abstract test classes or use the JUnit 4.x test runner provided in Spring Test.  This approach supports dependency injection into your test class and the full suite of Spring Test annotations. However, it does not support the features provided by the CamelSpringTestSupport classes.

Plain Spring Test using JUnit 3.x with XML Config Example

Here is a simple unit test using JUnit 3.x support from Spring Test using XML Config.{snippet:lang=java|id=example|url=camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java}Notice that we use @DirtiesContext on the test methods to force Spring Testing to automatically reload the CamelContext after each test method - this ensures that the tests don't clash with each other, e.g., one test method sending to an endpoint that is then reused in another test method.

Also notice the use of @ContextConfiguration to indicate that by default we should look for the file FilterTest-context.xml on the classpath to configure the test case. The test context looks like:{snippet:lang=xml|id=example|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml}This test will load a Spring XML configuration file called FilterTest-context.xml from the classpath in the same package structure as the FilterTest class and initialize it along with any Camel routes we define inside it, then inject the CamelContext instance into our test case.

For instance, like this maven folder layout:

src/test/java/org/apache/camel/spring/patterns/FilterTest.java src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Plain Spring Test Using JUnit 4.x With Java Config Example

You can completely avoid using an XML configuration file by using Spring Java Config.  Here is a unit test using JUnit 4.x support from Spring Test using Java Config.{snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java}This is similar to the XML Config example above except that there is no XML file and instead the nested ContextConfig class does all of the configuration; so your entire test case is contained in a single Java class. We currently have to reference by class name this class in the @ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and make Spring Test work more cleanly with Spring JavaConfig.

Plain Spring Test Using JUnit 4.0.x Runner With XML Config

You can avoid extending Spring classes by using the SpringJUnit4ClassRunner provided by Spring Test.  This custom JUnit runner means you are free to choose your own class hierarchy while retaining all the capabilities of Spring Test.

This is for Spring 4.0.x. If you use Spring 4.1 or newer, then see the next section.

java@RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration public class MyCamelTest {     @Autowired     protected CamelContext camelContext;     @EndpointInject(uri = "mock:foo")     protected MockEndpoint foo; @Test @DirtiesContext     public void testMocksAreValid() throws Exception { // ...                foo.message(0).header("bar").isEqualTo("ABC");         MockEndpoint.assertIsSatisfied(camelContext);     } }

Plain Spring Test Using JUnit 4.1.x Runner With XML Config

You can avoid extending Spring classes by using the SpringJUnit4ClassRunner provided by Spring Test.  This custom JUnit runner means you are free to choose your own class hierarchy while retaining all the capabilities of Spring Test.

From Spring 4.1, you need to use the @BootstrapWith annotation to configure it to use Camel testing, as shown below.

java@RunWith(CamelSpringJUnit4ClassRunner.class) @BootstrapWith(CamelTestContextBootstrapper.class) @ContextConfiguration public class MyCamelTest {     @Autowired     protected CamelContext camelContext;     @EndpointInject(uri = "mock:foo")     protected MockEndpoint foo; @Test @DirtiesContext     public void testMocksAreValid() throws Exception { // ...                foo.message(0).header("bar").isEqualTo("ABC");         MockEndpoint.assertIsSatisfied(camelContext);     } }

Camel Enhanced Spring Test

Using the org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunner runner with the @RunWith annotation or extending org.apache.camel.testng.AbstractCamelTestNGSpringContextTests provides the full feature set of Spring Test with support for the feature set provided in the CamelTestSupport classes.  

A number of Camel specific annotations have been developed in order to provide for declarative manipulation of the Camel context(s) involved in the test.  These annotations free your test classes from having to inherit from the CamelSpringTestSupport classes and also reduce the amount of code required to customize the tests.

Annotation Class

Applies To

Description

Default Behavioir If Not Present

Default Behavior If Present

org.apache.camel.test.spring.DisableJmx

Class

Indicates if JMX should be globally disabled in the CamelContexts that are bootstrapped  during the test through the use of Spring Test loaded application contexts.

JMX is disabled

JMX is disabled

org.apache.camel.test.spring.ExcludeRoutes

Class

Indicates if certain route builder classes should be excluded from discovery.  Initializes a org.apache.camel.spi.PackageScanClassResolver to exclude a set of given classes from being resolved. Typically this is used at test time to exclude certain routes, which might otherwise be just noisy, from being discovered and initialized.

Not enabled and no routes are excluded

No routes are excluded

org.apache.camel.test.spring.LazyLoadTypeConverters

Class

Deprecated.

Indicates if the CamelContexts that are bootstrapped during the test through the use of Spring Test loaded application contexts should use lazy loading of type converters.

Type converters are not lazy loaded

Type converters are not lazy loaded

org.apache.camel.test.spring.MockEndpoints

Class

Triggers the auto-mocking of endpoints whose URIs match the provided filter.  The default filter is "*" which matches all endpoints.  See org.apache.camel.impl.InterceptSendToMockEndpointStrategy for more details on the registration of the mock endpoints.

Not enabled

All endpoints are sniffed and recorded in a mock endpoint.

org.apache.camel.test.spring.MockEndpointsAndSkip

Class

Triggers the auto-mocking of endpoints whose URIs match the provided filter.  The default filter is "*", which matches all endpoints.  See org.apache.camel.impl.InterceptSendToMockEndpointStrategy for more details on the registration of the mock endpoints.  This annotation will also skip sending the message to matched endpoints as well.

Not enabled

All endpoints are sniffed and recorded in a mock endpoint.  The original endpoint is not invoked.

org.apache.camel.test.spring.ProvidesBreakpoint

Method

Indicates that the annotated method returns an org.apache.camel.spi.Breakpoint for use in the test.  Useful for intercepting traffic to all endpoints or simply for setting a break point in an IDE for debugging.  The method must be public, static, take no arguments, and return org.apache.camel.spi.Breakpoint.

N/A

The returned Breakpoint is registered in the CamelContext(s)

org.apache.camel.test.spring.ShutdownTimeout

Class

Indicates to set the shutdown timeout of all CamelContexts instantiated through the use of Spring Test loaded application contexts.  If no annotation is used, the timeout is automatically reduced to 10 seconds by the test framework.

10 seconds

10 seconds

org.apache.camel.test.spring.UseAdviceWith

Class

Indicates the use of adviceWith() within the test class.  If a class is annotated with this annotation and UseAdviceWith#value() returns true, any CamelContexts bootstrapped during the test through the use of Spring Test loaded application contexts will not be started automatically. 

The test author is responsible for injecting the Camel contexts into the test and executing CamelContext#start() on them at the appropriate time after any advice has been applied to the routes in the CamelContext(s).

CamelContexts do not automatically start.

CamelContexts do not automatically start.

org.apache.camel.test.spring.UseOverridePropertiesWithPropertiesComponent

Method

Camel 2.16:Indicates that the annotated method returns a java.util.Properties for use in the test, and that those properties override any existing properties configured on the PropertiesComponent.

 

Override properties

The following example illustrates the use of the @MockEndpoints annotation in order to setup mock endpoints as interceptors on all endpoints using the Camel Log component and the @DisableJmx annotation to enable JMX which is disabled during tests by default.  

Note: we still use the @DirtiesContext annotation to ensure that the CamelContext, routes, and mock endpoints are reinitialized between test methods.java@RunWith(CamelSpringJUnit4ClassRunner.class) @BootstrapWith(CamelTestContextBootstrapper.class) @ContextConfiguration @DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD) @MockEndpoints("log:*") @DisableJmx(false) public class CamelSpringJUnit4ClassRunnerPlainTest { @Autowired protected CamelContext camelContext2; protected MockEndpoint mockB; @EndpointInject(uri = "mock:c", context = "camelContext2") protected MockEndpoint mockC; @Produce(uri = "direct:start2", context = "camelContext2") protected ProducerTemplate start2; @EndpointInject(uri = "mock:log:org.apache.camel.test.junit4.spring", context = "camelContext2") protected MockEndpoint mockLog; @Test public void testPositive() throws Exception { mockC.expectedBodiesReceived("David"); mockLog.expectedBodiesReceived("Hello David"); start2.sendBody("David"); MockEndpoint.assertIsSatisfied(camelContext); }

Adding More Mock Expectations

If you wish to programmatically add any new assertions to your test you can easily do so with the following. Notice how we use @EndpointInject to inject a Camel endpoint into our code then the Mock API to add an expectation on a specific message.

java@ContextConfiguration public class MyCamelTest extends AbstractJUnit38SpringContextTests { @Autowired protected CamelContext camelContext; @EndpointInject(uri = "mock:foo") protected MockEndpoint foo; public void testMocksAreValid() throws Exception { // lets add more expectations foo.message(0).header("bar").isEqualTo("ABC"); MockEndpoint.assertIsSatisfied(camelContext); } }

Further Processing the Received Messages

Sometimes once a Mock endpoint has received some messages you want to then process them further to add further assertions that your test case worked as you expect.

So you can then process the received message exchanges if you like...

java@ContextConfiguration public class MyCamelTest extends AbstractJUnit38SpringContextTests { @Autowired protected CamelContext camelContext; @EndpointInject(uri = "mock:foo") protected MockEndpoint foo; public void testMocksAreValid() throws Exception { // lets add more expectations... MockEndpoint.assertIsSatisfied(camelContext); // now lets do some further assertions List<Exchange> list = foo.getReceivedExchanges(); for (Exchange exchange : list) { Message in = exchange.getIn(); // ... } } }

Sending and Receiving Messages

It might be that the Enterprise Integration Patterns you have defined in either Spring XML or using the Java DSL do all of the sending and receiving and you might just work with the Mock endpoints as described above. However sometimes in a test case its useful to explicitly send or receive messages directly.

To send or receive messages you should use the Bean Integration mechanism. For example to send messages inject a ProducerTemplate using the @EndpointInject annotation then call the various send methods on this object to send a message to an endpoint. To consume messages use the @MessageDriven annotation on a method to have the method invoked when a message is received.

javapublic class Foo { @EndpointInject(uri = "activemq:foo.bar") ProducerTemplate producer; public void doSomething() { // lets send a message! producer.sendBody("<hello>world!</hello>"); } // lets consume messages from the 'cheese' queue @MessageDriven(uri="activemq:cheese") public void onCheese(String name) { // ... } }

See Also

Camel Guice

We have support for Google Guice as a dependency injection framework.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-guice</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

Dependency Injecting Camel with Guice

The GuiceCamelContext is designed to work nicely inside Guice. You then need to bind it using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules you can use if you wish - or you can bind the GuiceCamelContext yourself in your own module.

  • CamelModule is the base module which binds the GuiceCamelContext but leaves it up you to bind the RouteBuilder instances
  • CamelModuleWithRouteTypes extends CamelModule so that in the constructor of the module you specify the RouteBuilder classes or instances to use
  • CamelModuleWithMatchingRoutes extends CamelModule so that all bound RouteBuilder instances will be injected into the CamelContext or you can supply an optional Matcher to find RouteBuilder instances matching some kind of predicate.

So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes(MyRouteBuilder.class, AnotherRouteBuilder.class));
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

Or inject them all

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes());
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any other dependent objects.

Bootstrapping with JNDI

A common pattern used in J2EE is to bootstrap your application or root objects by looking them up in JNDI. This has long been the approach when working with JMS for example - looking up the JMS ConnectionFactory in JNDI for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI Provider which lets you bootstrap Guice from a jndi.properties file which can include the Guice Modules to create along with environment specific properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify the jndi properties file name in the Guice Main with option -j or -jndiProperties with the properties file location to let Guice Main to load right jndi properties file.

Configuring Component, Endpoint or RouteBuilder instances

You can use Guice to dependency inject whatever objects you need to create, be it an Endpoint, Component, RouteBuilder or arbitrary bean used within a route.

The easiest way to do this is to create your own Guice Module class which extends one of the above module classes and add a provider method for each object you wish to create. A provider method is annotated with @Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

    @Provides
    @JndiBind("jms")
    JmsComponent jms(@Named("activemq.brokerURL") String brokerUrl) {
        return JmsComponent.jmsComponent(new ActiveMQConnectionFactory(brokerUrl));
    }
}

You can optionally annotate the method with @JndiBind to bind the object to JNDI at some name if the object is a component, endpoint or bean you wish to refer to by name in your routes.

You can inject any environment specific properties (such as URLs, machine names, usernames/passwords and so forth) from the jndi.properties file easily using the @Named annotation as shown above. This allows most of your configuration to be in Java code which is typesafe and easily refactorable - then leaving some properties to be environment specific (the jndi.properties file) which you can then change based on development, testing, production etc.

Creating multiple RouteBuilder instances per type

It is sometimes useful to create multiple instances of a particular RouteBuilder with different configurations.

To do this just create multiple provider methods for each configuration; or create a single provider method that returns a collection of RouteBuilder instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

    @Provides
    @JndiBind("foo")
    Collection<RouteBuilder> foo(@Named("fooUrl") String fooUrl) {
        return Lists.newArrayList(new MyRouteBuilder(fooUrl), new MyRouteBuilder("activemq:CheeseQueue"));
    }
}

See Also

Error rendering macro 'include'

null

Database

Camel can work with databases in a number of different ways. This document tries to outline the most common approaches.

Database endpoints

Camel provides a number of different endpoints for working with databases

  • JPA for working with hibernate, openjpa or toplink. When consuming from the endpoints entity beans are read (and deleted/updated to mark as processed) then when producing to the endpoints they are written to the database (via insert/update).
  • iBATIS similar to the above but using Apache iBATIS
  • JDBC similar though using explicit SQL
  • SQL uses spring-jdbc behind the scene for the actual SQL handling. The difference between this component and JDBC component is that in case of SQL the query is a property of the endpoint and it uses message payload as parameters passed to the query

Database pattern implementations

Various patterns can work with databases as follows

Error rendering macro 'include'

null

Asynchronous Processing

Overview

Supported versions

The information on this page applies for Camel 2.4 or later.

Before Camel 2.4 the asynchronous processing is only implemented for JBI where as in Camel 2.4 we have implemented it in many other areas. See more at Asynchronous Routing Engine.

Camel supports a more complex asynchronous processing model. The asynchronous processors implement the org.apache.camel.AsyncProcessor interface which is derived from the more synchronous org.apache.camel.Processor interface. There are advantages and disadvantages when using asynchronous processing when compared to using the standard synchronous processing model.

Advantages:

  • Processing routes that are composed fully of asynchronous processors do not use up threads waiting for processors to complete on blocking calls. This can increase the scalability of your system by reducing the number of threads needed to process the same workload.
  • Processing routes can be broken up into SEDA processing stages where different thread pools can process the different stages. This means that your routes can be processed concurrently.

Disadvantages:

  • Implementing asynchronous processors is more complex than implementing the synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple synchronous APIs unless you identify a performance of scalability requirement that dictates otherwise. A Processor whose process() method blocks for a long time would be good candidates for being converted into an asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
   boolean process(Exchange exchange, AsyncCallback callback);
}

The AsyncProcessor defines a single process() method which is very similar to it's synchronous Processor.process() brethren.

Here are the differences:

  • A non-null AsyncCallback MUST be supplied which will be notified when the exchange processing is completed.
  • It MUST not throw any exceptions that occurred while processing the exchange. Any such exceptions must be stored on the exchange's Exception property.
  • It MUST know if it will complete the processing synchronously or asynchronously. The method will return true if it does complete synchronously, otherwise it returns false.
  • When the processor has completed processing the exchange, it must call the callback.done(boolean sync) method.
  • The sync parameter MUST match the value returned by the process() method.

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the AsyncProcessor interface, can be coerced to implement the AsyncProcessor interface. This is usually done when you are implementing a Camel component consumer that supports asynchronous completion of the exchanges that it is pushing through the Camel routes. Consumers are provided a Processor object when created. All Processor object can be coerced to a AsyncProcessor using the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start with the consumer implementation making use of the asynchronous processing API. If it called the synchronous process() method instead, the consumer's thread would be forced to be blocked and in use for the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous API, it does not mean that the processing will take place asynchronously. It only allows the possibility that it can be done without tying up the caller's thread. If the processing happens asynchronously is dependent on the configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback class instance which can reference the exchange object that was declared final. This allows it to finish up any post processing that is needed when the called processor is done processing the exchange.

Example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {
    public void done(boolean sync) {

        if (exchange.isFailed()) {
            ... // do failure processing.. perhaps rollback etc.
        } else {
            ... // processing completed successfully, finish up 
                // perhaps commit etc.
        }
    }
});

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the AsyncProcessor, and have seen how to make use of it when calling processors, let's looks a what the thread model/sequence scenarios will look like for some sample routes.

The Jetty component's consumers support asynchronous processing through the use of continuations. Suffice to say it can take a HTTP request and pass it to a Camel route for asynchronous processing. If the processing is indeed asynchronous, it uses a Jetty continuation so that the HTTP request is 'parked' and the thread is released. Once the Camel route finishes processing the request, the Jetty component uses the AsyncCallback to tell Jetty to 'un-park' the request. Jetty un-parks the request, the HTTP response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async". This is why AsyncProcessor.process() implementations must accurately report if request is completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and implement the AsyncProcessor interface. A route that uses both the jetty asynchronous consumer and the jhc asynchronous producer will be a fully asynchronous route and has some nice attributes that can be seen if we take a look at a sequence diagram of the processing route.

For the route:

from("jetty:http://localhost:8080/service")
    .to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

The diagram simplifies things by making it looks like processors implement the AsyncCallback interface when in reality the AsyncCallback interfaces are inline inner classes, but it illustrates the processing flow and shows how two separate threads are used to complete the processing of the original HTTP request. The first thread is synchronous up until processing hits the jhc producer which issues the HTTP request. It then reports that the exchange processing will complete asynchronously using NIO to get the response back. Once the jhc component has received a full response it uses AsyncCallback.done() method to notify the caller. These callback notifications continue up until it reaches the original Jetty consumer which then un-parks the HTTP request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous processors/components. The pipeline processor is the backbone of a Camel processing route. It glues all the processing steps together. It is implemented as an AsyncProcessor and supports interleaving synchronous and asynchronous processors as the processing steps in the pipeline.

Let's say we have two custom asynchronous processors, namely: MyValidator and MyTransformation. Let's say we want to load file from the data/in directory validate them with the MyValidator() processor, transform them into JPA Java objects using MyTransformation and then insert them into the database using the JPA component. Let's say that the transformation process takes quite a bit of time and we want to allocate 20 threads to do parallel transformations of the input files. The solution is to make use of the thread processor. The thread is AsyncProcessor that forces subsequent processing in asynchronous thread from a thread pool.

The route might look like:

from("file:data/in")
  .process(new MyValidator())
  .threads(20)
  .process(new MyTransformation())
  .to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the second part of the thread sequence.

Staying Synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things synchronously. This is due to the fact that starting up an asynchronous thread and doing a context switch to it adds a little bit of of overhead. So it is generally encouraged that AsyncProcessor's do as much work as they can synchronously. When they get to a step that would block for a long time, at that point they should return from the process call and let the caller know that it will be completing the call asynchronously.

Implementing Virtual Topics on other JMS providers

ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck (see this page for more detail) mostly since they don't support Competing Consumers.

Most folks want Queue semantics when consuming messages; so that you can support Competing Consumers for load balancing along with things like Message Groups and Exclusive Consumers to preserve ordering or partition the queue across consumers.

However if you are using another JMS provider you can implement Virtual Topics by switching to ActiveMQ (smile) or you can use the following Camel pattern.

First here's the ActiveMQ approach.

  • send to activemq:topic:VirtualTopic.Orders
  • for consumer A consume from activemq:Consumer.A.VirtualTopic.Orders

When using another message broker use the following pattern

  • send to jms:Orders
  • add this route with a to() for each logical durable topic subscriber
    from("jms:Orders").to("jms:Consumer.A", "jms:Consumer.B", ...); 
  • for consumer A consume from jms:Consumer.A

What's the Camel Transport for CXF

In CXF you offer or consume a webservice by defining its address. The first part of the address specifies the protocol to use. For example address="http://localhost:9000" in an endpoint configuration means your service will be offered using the http protocol on port 9000 of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel". So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which implements the CXF transport API with the Camel core library. This allows you to easily use Camel's routing engine and integration patterns support together with your CXF services.

Integrate Camel into CXF transport layer

To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring

You can use the following snippet in your applicationcontext if you want to configure anything special. If you only want to activate the camel transport you do not have to do anything in your application context. As soon as you include the camel-cxf-transport jar (or camel-cxf.jar if your camel version is less than 2.7.x) in your app, cxf will scan the jar and load a CamelTransportFactory for you.

xml<!-- you don't need to specify the CamelTransportFactory configuration as it is auto load by CXF bus --> <bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory"> <property name="bus" ref="cxf" /> <property name="camelContext" ref="camelContext" /> <!-- checkException new added in Camel 2.1 and Camel 1.6.2 --> <!-- If checkException is true , CamelDestination will check the outMessage's exception and set it into camel exchange. You can also override this value in CamelDestination's configuration. The default value is false. This option should be set true when you want to leverage the camel's error handler to deal with fault message --> <property name="checkException" value="true" /> <property name="transportIds"> <list> <value>http://cxf.apache.org/transports/camel</value> </list> </property> </bean>

Integrating the Camel Transport in a programmatic way

Camel transport provides a setContext method that you could use to set the Camel context into the transport factory. If you want this factory take effect, you need to register the factory into the CXF bus. Here is a full example for you.

javaimport org.apache.cxf.Bus; import org.apache.cxf.BusFactory; import org.apache.cxf.transport.ConduitInitiatorManager; import org.apache.cxf.transport.DestinationFactoryManager; ... BusFactory bf = BusFactory.newInstance(); Bus bus = bf.createBus(); CamelTransportFactory camelTransportFactory = new CamelTransportFactory(); // set up the CamelContext which will be use by the CamelTransportFactory camelTransportFactory.setCamelContext(context) // if you are using CXF higher then 2.4.x the camelTransportFactory.setBus(bus); // if you are lower CXF, you need to register the ConduitInitiatorManager and DestinationFactoryManager like below // register the conduit initiator ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class); cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID, camelTransportFactory); // register the destination factory DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class); dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID, camelTransportFactory); // set or bus as the default bus for cxf BusFactory.setDefaultBus(bus);

Configure the destination and conduit with Spring

Namespace

The elements used to configure an Camel transport endpoint are defined in the namespace http://cxf.apache.org/transports/camel. It is commonly referred to using the prefix camel. In order to use the Camel transport configuration elements, you will need to add the lines shown below to the beans element of your endpoint's configuration file. In addition, you will need to add the configuration elements' namespace to the xsi:schemaLocation attribute.

Adding the Configuration Namespace<beans ... xmlns:camel="http://cxf.apache.org/transports/camel ... xsi:schemaLocation="... http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/camel.xsd ...>

The destination element

You configure an Camel transport server endpoint using the camel:destination element and its children. The camel:destination element takes a single attribute, name, that specifies the WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form portQName.camel-destination. The example below shows the camel:destination element that would be used to add configuration for an endpoint that was specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort"> if the endpoint's target namespace was http://widgets.widgetvendor.net.

camel:destination Element... <camel:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-destination> <camelContext id="context" xmlns="http://activemq.apache.org/camel/schema/spring"> <route> <from uri="direct:EndpointC" /> <to uri="direct:EndpointD" /> </route> </camelContext> </camel:destination> <!-- new added feature since Camel 2.11.x <camel:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-destination" camelContextId="context" /> ...

The camel:destination element for Spring has a number of child elements that specify configuration information. They are described below.

Element

Description

camel-spring:camelContext

You can specify the camel context in the camel destination

camel:camelContextRef

The camel context id which you want inject into the camel destination

The conduit element

You configure a Camel transport client using the camel:conduit element and its children. The camel:conduit element takes a single attribute, name, that specifies the WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form portQName.camel-conduit. For example, the code below shows the camel:conduit element that would be used to add configuration for an endpoint that was specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort"> if the endpoint's target namespace was http://widgets.widgetvendor.net.

xmlhttp-conf:conduit Element... <camelContext id="conduit_context" xmlns="http://activemq.apache.org/camel/schema/spring"> <route> <from uri="direct:EndpointA" /> <to uri="direct:EndpointB" /> </route> </camelContext> <camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit"> <camel:camelContextRef>conduit_context</camel:camelContextRef> </camel:conduit> <!-- new added feature since Camel 2.11.x <camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit" camelContextId="conduit_context" /> <camel:conduit name="*.camel-conduit"> <!-- you can also using the wild card to specify the camel-conduit that you want to configure --> ... </camel:conduit> ...

The camel:conduit element has a number of child elements that specify configuration information. They are described below.

Element

Description

camel-spring:camelContext

You can specify the camel context in the camel conduit

camel:camelContextRef

The camel context id which you want inject into the camel conduit

Configure the destination and conduit with Blueprint

From Camel 2.11.x, Camel Transport supports to be configured with Blueprint.

If you are using blueprint, you should use the the namespace http://cxf.apache.org/transports/camel/blueprint and import the schema like the blow.

Adding the Configuration Namespace for blueprint<beans ... xmlns:camel="http://cxf.apache.org/transports/camel/blueprint" ... xsi:schemaLocation="... http://cxf.apache.org/transports/camel/blueprint http://cxf.apache.org/schmemas/blueprint/camel.xsd ...>

In blueprint camel:conduit camel:destination only has one camelContextId attribute, they doesn't support to specify the camel context in the camel destination.

<camel:conduit id="*.camel-conduit" camelContextId="camel1" /> <camel:destination id="*.camel-destination" camelContextId="camel1" />

Example Using Camel as a load balancer for CXF

This example shows how to use the camel load balancing feature in CXF. You need to load the configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA" and "camel://direct:EndpointB"

{snippet:id=example|lang=xml|url=camel/trunk/examples/camel-example-cxf/src/main/resources/org/apache/camel/example/camel/transport/CamelDestination.xml}

Complete Howto and Example for attaching Camel to CXF

Better JMS Transport for CXF Webservice using Apache Camel 

Error rendering macro 'include'

null

Tutorials

There now follows the documentation on camel tutorials

We have a number of tutorials as listed below. The tutorials often comes with source code which is either available in the Camel Download or attached to the wiki page.

Notice

These tutorials listed below, is hosted at Apache. We offer the Articles page where we have a link collection for 3rd party Camel material, such as tutorials, blog posts, published articles, videos, pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a link to it. You can contact the Camel Team, for example using the Mailing Lists, (or post a tweet with the word Apache Camel).

  • Report Incident - This tutorial introduces Camel steadily and is based on a real life integration problem
    This is a very long tutorial beginning from the start; its for entry level to Camel. Its based on a real life integration, showing how Camel can be introduced in an existing solution. We do this in baby steps. The tutorial is currently work in progress, so check it out from time to time. The tutorial explains some of the inner building blocks Camel uses under the covers. This is good knowledge to have when you start using Camel on a higher abstract level where it can do wonders in a few lines of routing DSL.
  • Tutorial on Camel 1.4 for Integration
    Another real-life scenario. The company sells widgets, with a somewhat unique business process (their customers periodically report what they've purchased in order to get billed). However every customer uses a different data format and protocol. This tutorial goes through the process of integrating (and testing!) several customers and their electronic reporting of the widgets they've bought, along with the company's response.
  • Tutorial how to build a Service Oriented Architecture using Camel with OSGI - Updated 20/11/2009
    The tutorial has been designed in two parts. The first part introduces basic concept to create a simple SOA solution using Camel and OSGI and deploy it in a OSGI Server like Apache Felix Karaf and Spring DM Server while the second extends the ReportIncident tutorial part 4 to show How we can separate the different layers (domain, service, ...) of an application and deploy them in separate bundles. The Web Application has also be modified in order to communicate to the OSGI bundles.
  • Several of the vendors on the Commercial Camel Offerings page also offer various tutorials, webinars, examples, etc.... that may be useful.
  • Examples
    While not actual tutorials you might find working through the source of the various Examples useful.

Tutorial on Spring Remoting with JMS

 

Thanks

This tutorial was kindly donated to Apache Camel by Martin Gilday.

Preface

This tutorial aims to guide the reader through the stages of creating a project which uses Camel to facilitate the routing of messages from a JMS queue to a Spring service. The route works in a synchronous fashion returning a response to the client.

Prerequisites

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel distribution as examples/camel-example-spring-jms.

About

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless integrated with Spring to leverage the best of both worlds. This sample is client server solution using JMS messaging as the transport. The sample has two flavors of servers and also for clients demonstrating different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that does computations on the received message and returns a response.
The EIP patterns used in this sample are:

Pattern

Description

Message Channel

We need a channel so the Clients can communicate with the server.

Message

The information is exchanged using the Camel Message interface.

Message Translator

This is where Camel shines as the message exchange between the Server and the Clients are text based strings with numbers. However our business service uses int for numbers. So Camel can do the message translation automatically.

Message Endpoint

It should be easy to send messages to the Server from the the clients. This is achieved with Camel's powerful Endpoint pattern that even can be more powerful combined with Spring remoting. The tutorial has clients using each kind of technique for this.

Point to Point Channel

The client and server exchange data using point to point using a JMS queue.

Event Driven Consumer

The JMS broker is event driven and is invoked when the client sends a message to the server.

We use the following Camel components:

Component

Description

ActiveMQ

We use Apache ActiveMQ as the JMS broker on the Server side

Bean

We use the bean binding to easily route the messages to our business service. This is a very powerful component in Camel.

File

In the AOP enabled Server we store audit trails as files.

JMS

Used for the JMS messaging

Create the Camel Project

For the purposes of the tutorial a single Maven project will be used for both the client and server. Ideally you would break your application down into the appropriate components.

mvn archetype:generate -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, spring, jms components, and finally ActiveMQ as the message broker.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/pom.xml}As we use spring xml configuration for the ActiveMQ JMS broker we need this dependency:{snippet:id=e2|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/pom.xml}

Writing the Server

Create the Spring Service

For this example the Spring service (our business service) on the server will be a simple multiplier which trebles in the received value.{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/server/Multiplier.java}And the implementation of this service is:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/server/Treble.java}Notice that this class has been annotated with the @Service spring annotation. This ensures that this class is registered as a bean in the registry with the given name multiplier.

Define the Camel Routes

{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/server/ServerRoutes.java}This defines a Camel route from the JMS queue named numbers to the Spring bean named multiplier. Camel will create a consumer to the JMS queue which forwards all received messages onto the the Spring bean, using the method named multiply.

Configure Spring

The Spring config file is placed under META-INF/spring as this is the default location used by the Camel Maven Plugin, which we will later use to run our server.
First we need to do the standard scheme declarations in the top. In the camel-server.xml we are using spring beans as the default bean: namespace and springs context:. For configuring ActiveMQ we use broker: and for Camel we of course have camel:. Notice that we don't use version numbers for the camel-spring schema. At runtime the schema is resolved in the Camel bundle. If we use a specific version number such as 1.4 then its IDE friendly as it would be able to import it and provide smart completion etc. See Xml Reference for further details.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}We use Spring annotations for doing IoC dependencies and its component-scan features comes to the rescue as it scans for spring annotations in the given package name:{snippet:id=e2|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}Camel will of course not be less than Spring in this regard so it supports a similar feature for scanning of Routes. This is configured as shown below.
Notice that we also have enabled the JMXAgent so we will be able to introspect the Camel Server with a JMX Console.{snippet:id=e3|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}The ActiveMQ JMS broker is also configured in this xml file. We set it up to listen on TCP port 61610.{snippet:id=e4|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}As this examples uses JMS then Camel needs a JMS component that is connected with the ActiveMQ broker. This is configured as shown below:{snippet:id=e5|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}Notice: The JMS component is configured in standard Spring beans, but the gem is that the bean id can be referenced from Camel routes - meaning we can do routing using the JMS Component by just using jms: prefix in the route URI. What happens is that Camel will find in the Spring Registry for a bean with the id="jms". Since the bean id can have arbitrary name you could have named it id="jmsbroker" and then referenced to it in the routing as from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded in this application.

component-scan

Defines the package to be scanned for Spring stereotype annotations, in this case, to load the "multiplier" bean

camel-context

Defines the package to be scanned for Camel routes. Will find the ServerRoutes class and create the routes contained within it

jms bean

Creates the Camel JMS component

Run the Server

The Server is started using the org.apache.camel.spring.Main class that can start camel-spring application out-of-the-box. The Server can be started in several flavors:

  • as a standard java main application - just start the org.apache.camel.spring.Main class
  • using maven jave:exec
  • using camel:run

In this sample as there are two servers (with and without AOP) we have prepared some profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

Writing The Clients

This sample has three clients demonstrating different Camel techniques for communication

  • CamelClient using the ProducerTemplate for Spring template style coding
  • CamelRemoting using Spring Remoting
  • CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly using ProducerTemplate. We will later create a client which uses Spring remoting to hide the fact that messaging is being used.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client.xml}{snippet:id=e2|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client.xml}{snippet:id=e3|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client.xml}The client will not use the Camel Maven Plugin so the Spring XML has been placed in src/main/resources to not conflict with the server configs.

camelContext

The Camel context is defined but does not contain any routes

template

The ProducerTemplate is used to place messages onto the JMS queue

jms bean

This initialises the Camel JMS component, allowing us to place messages onto the queue

And the CamelClient source code:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/client/CamelClient.java}The ProducerTemplate is retrieved from a Spring ApplicationContext and used to manually place a message on the "numbers" JMS queue. The requestBody method will use the exchange pattern InOut, which states that the call should be synchronous, and that the caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the CamelServer are running.

Client Using Spring Remoting

Spring Remoting "eases the development of remote-enabled services". It does this by allowing you to invoke remote services through your regular Java interface, masking that a remote service is being called.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client-remoting.xml}The snippet above only illustrates the different and how Camel easily can setup and use Spring Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the remote invocations. The serviceInterface property details which Java interface is to be implemented by the proxy. The serviceUrl defines where messages sent to this proxy bean will be directed. Here we define the JMS endpoint with the "numbers" queue we used when working with Camel template directly. The value of the id property is the name that will be the given to the bean when it is exposed through the Spring ApplicationContext. We will use this name to retrieve the service in our client. I have named the bean multiplierProxy simply to highlight that it is not the same multiplier bean as is being used by CamelServer. They are in completely independent contexts and have no knowledge of each other. As you are trying to mask the fact that remoting is being used in a real application you would generally not include proxy in the name.

And the Java client source code:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/client/CamelClientRemoting.java}Again, the client is similar to the original client, but with some important differences.

  1. The Spring context is created with the new camel-client-remoting.xml
  2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-trivial example you would have the bean injected as in the standard Spring manner.
  3. The multiply method is then called directly. In the client we are now working to an interface. There is no mention of Camel or JMS inside our Java code.

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to the Server. The Client uses the same simple API to get hold of the endpoint, create an exchange that holds the message, set the payload and create a producer that does the send and receive. All done using the same neutral Camel API for all the components in Camel. So if the communication was socket TCP based you just get hold of a different endpoint and all the java code stays the same. That is really powerful.

Okay enough talk, show me the code!{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/client/CamelClientEndpoint.java}Switching to a different component is just a matter of using the correct endpoint. So if we had defined a TCP endpoint as: "mina:tcp://localhost:61610" then its just a matter of getting hold of this endpoint instead of the JMS and all the rest of the java code is exactly the same.

Run the Clients

The Clients is started using their main class respectively.

  • as a standard java main application - just start their main class
  • using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom.xml file how the profiles for the clients is defined.

Using the Camel Maven Plugin

The Camel Maven Plugin allows you to run your Camel routes directly from Maven. This negates the need to create a host application, as we did with Camel server, simply to start up the container. This can be very useful during development to get Camel routes running quickly.

pom.xml<build> <plugins> <plugin> <groupId>org.apache.camel</groupId> <artifactId>camel-maven-plugin</artifactId> </plugin> </plugins> </build>

All that is required is a new plugin definition in your Maven POM. As we have already placed our Camel config in the default location (camel-server.xml has been placed in META-INF/spring/) we do not need to tell the plugin where the route definitions are located. Simply run mvn camel:run.

Using Camel JMX

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As we have enabled the JMXAgent in our tutorial we can fire up the jconsole and connect to the following service URI: service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel. Notice that Camel will log at INFO level the JMX Connector URI:

... DefaultInstrumentationAgent INFO JMX connector thread started on service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel ...

In the screenshot below we can see the route and its performance metrics:

See Also

Tutorial - camel-example-reportincident

Introduction

Creating this tutorial was inspired by a real life use-case I discussed over the phone with a colleague. He was working at a client whom uses a heavy-weight integration platform from a very large vendor. He was in talks with developer shops to implement a new integration on this platform. His trouble was the shop tripled the price when they realized the platform of choice. So I was wondering how we could do this integration with Camel. Can it be done, without tripling the cost (wink).

This tutorial is written during the development of the integration. I have decided to start off with a sample that isn't Camel's but standard Java and then plugin Camel as we goes. Just as when people needed to learn Spring you could consume it piece by piece, the same goes with Camel.

The target reader is person whom hasn't experience or just started using Camel.

Motivation for this tutorial

I wrote this tutorial motivated as Camel lacked an example application that was based on the web application deployment model. The entire world hasn't moved to pure OSGi deployments yet.

The full source code for this tutorial as complete is part of the Apache Camel distribution in the examples/camel-example-reportincident directory

The use-case

The goal is to allow staff to report incidents into a central administration. For that they use client software where they report the incident and submit it to the central administration. As this is an integration in a transition phase the administration should get these incidents by email whereas they are manually added to the database. The client software should gather the incident and submit the information to the integration platform that in term will transform the report into an email and send it to the central administrator for manual processing.

The figure below illustrates this process. The end users reports the incidents using the client applications. The incident is sent to the central integration platform as webservice. The integration platform will process the incident and send an OK acknowledgment back to the client. Then the integration will transform the message to an email and send it to the administration mail server. The users in the administration will receive the emails and take it from there.

In EIP patterns

We distill the use case as EIP patterns:

Parts

This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel

Part 1 - This first part explain how to setup the project and get a webservice exposed using Apache CXF. In fact we don't touch Camel yet.

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any XML configuration file) and create the full feature integration. This part will introduce different Camel's concepts and How we can build our solution using them like :

  • CamelContext
  • Endpoint, Exchange & Producer
  • Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the solution with the event driven consumer and how to send the email through the Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and using CXF endpoints directly in Camel
Part 6 - Showing a alternative solution primarily using XML instead of Java code

Using Axis 2

See this blog entry by Sagara demonstrating how to use Apache Axis 2 instead of Apache CXF as the web service framework.

Part 1

Prerequisites

This tutorial uses the following frameworks:

  • Maven 3.0.4
  • Apache Camel 2.10.0
  • Apache CXF 2.6.1
  • Spring 3.0.7

Note: The sample project can be downloaded, see the resources section.

Initial Project Setup

We want the integration to be a standard .war application that can be deployed in any web container such as Tomcat, Jetty or even heavy weight application servers such as WebLogic or WebSphere. There fore we start off with the standard Maven webapp project that is created with the following long archetype command:

mvn archetype:create -DgroupId=org.apache.camel -DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupId etc. doens't have to be org.apache.camel it can be com.mycompany.whatever. But I have used these package names as the example is an official part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the webservice part where we want to use Apache CXF for the webservice stuff. So we add this to the pom.xml

    <properties>
        <cxf-version>2.6.1</cxf-version>
    </properties>

    <dependency>
        <groupId>org.apache.cxf</groupId>
        <artifactId>cxf-rt-core</artifactId>
        <version>${cxf-version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.cxf</groupId>
        <artifactId>cxf-rt-frontend-jaxws</artifactId>
        <version>${cxf-version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.cxf</groupId>
        <artifactId>cxf-rt-transports-http</artifactId>
        <version>${cxf-version}</version>
    </dependency>

Developing the WebService

As we want to develop webservice with the contract first approach we create our .wsdl file. As this is a example we have simplified the model of the incident to only include 8 fields. In real life the model would be a bit more complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and name the file report_incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
	xmlns:tns="http://reportincident.example.camel.apache.org"
	xmlns:xs="http://www.w3.org/2001/XMLSchema"
	xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
	xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
	targetNamespace="http://reportincident.example.camel.apache.org">

	<!-- Type definitions for input- and output parameters for webservice -->
	<wsdl:types>
	<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
			<xs:element name="inputReportIncident">
				<xs:complexType>
					<xs:sequence>
						<xs:element type="xs:string"  name="incidentId"/>
						<xs:element type="xs:string"  name="incidentDate"/>
						<xs:element type="xs:string"  name="givenName"/>
						<xs:element type="xs:string"  name="familyName"/>
						<xs:element type="xs:string"  name="summary"/>
						<xs:element type="xs:string"  name="details"/>
						<xs:element type="xs:string"  name="email"/>
						<xs:element type="xs:string"  name="phone"/>
					</xs:sequence>
				</xs:complexType>
			</xs:element>
			<xs:element name="outputReportIncident">
				<xs:complexType>
					<xs:sequence>
						<xs:element type="xs:string" name="code"/>
					</xs:sequence>
				</xs:complexType>
			</xs:element>
		</xs:schema>
	</wsdl:types>

	<!-- Message definitions for input and output -->
	<wsdl:message name="inputReportIncident">
		<wsdl:part name="parameters" element="tns:inputReportIncident"/>
	</wsdl:message>
	<wsdl:message name="outputReportIncident">
		<wsdl:part name="parameters" element="tns:outputReportIncident"/>
	</wsdl:message>

	<!-- Port (interface) definitions -->
	<wsdl:portType name="ReportIncidentEndpoint">
		<wsdl:operation name="ReportIncident">
			<wsdl:input message="tns:inputReportIncident"/>
			<wsdl:output message="tns:outputReportIncident"/>
		</wsdl:operation>
	</wsdl:portType>

	<!-- Port bindings to transports and encoding - HTTP, document literal encoding is used -->
	<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
		<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
		<wsdl:operation name="ReportIncident">
			<soap:operation
				soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
				style="document"/>
			<wsdl:input>
				<soap:body parts="parameters" use="literal"/>
			</wsdl:input>
			<wsdl:output>
				<soap:body parts="parameters" use="literal"/>
			</wsdl:output>
		</wsdl:operation>
	</wsdl:binding>

	<!-- Service definition -->
	<wsdl:service name="ReportIncidentService">
		<wsdl:port name="ReportIncidentPort" binding="tns:ReportIncidentBinding">
			<soap:address location="http://reportincident.example.camel.apache.org"/>
		</wsdl:port>
	</wsdl:service>

</wsdl:definitions>

CXF wsdl2java

Then we integration the CXF wsdl2java generator in the pom.xml so we have CXF generate the needed POJO classes for our webservice contract.
However at first we must configure maven to live in the modern world of Java 1.6 so we must add this to the pom.xml

			<!-- to compile with 1.6 -->
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<configuration>
					<source>1.6</source>
					<target>1.6</target>
				</configuration>
			</plugin>

And then we can add the CXF wsdl2java code generator that will hook into the compile goal so its automatic run all the time:

			<!-- CXF wsdl2java generator, will plugin to the compile goal -->
			<plugin>
				<groupId>org.apache.cxf</groupId>
				<artifactId>cxf-codegen-plugin</artifactId>
				<version>${cxf-version}</version>
				<executions>
					<execution>
						<id>generate-sources</id>
						<phase>generate-sources</phase>
						<configuration>
							<sourceRoot>${basedir}/target/generated/src/main/java</sourceRoot>
							<wsdlOptions>
								<wsdlOption>
									<wsdl>${basedir}/src/main/webapp/WEB-INF/wsdl/report_incident.wsdl</wsdl>
								</wsdlOption>
							</wsdlOptions>
						</configuration>
						<goals>
							<goal>wsdl2java</goal>
						</goals>
					</execution>
				</executions>
			</plugin>

You are now setup and should be able to compile the project. So running the mvn compile should run the CXF wsdl2java and generate the source code in the folder &{basedir}/target/generated/src/main/java that we specified in the pom.xml above. Since its in the target/generated/src/main/java maven will pick it up and include it in the build process.

Configuration of the web.xml

Next up is to configure the web.xml to be ready to use CXF so we can expose the webservice.
As Spring is the center of the universe, or at least is a very important framework in today's Java land we start with the listener that kick-starts Spring. This is the usual piece of code:

	<!-- the listener that kick-starts Spring -->
	<listener>
		<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
	</listener>

And then we have the CXF part where we define the CXF servlet and its URI mappings to which we have chosen that all our webservices should be in the path /webservices/

	<!-- CXF servlet -->
	<servlet>
		<servlet-name>CXFServlet</servlet-name>
		<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
		<load-on-startup>1</load-on-startup>
	</servlet>

	<!-- all our webservices are mapped under this URI pattern -->
	<servlet-mapping>
		<servlet-name>CXFServlet</servlet-name>
		<url-pattern>/webservices/*</url-pattern>
	</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring XML that we link to fron the web.xml by the standard Spring contextConfigLocation property in the web.xml

	<!-- location of spring xml files -->
	<context-param>
		<param-name>contextConfigLocation</param-name>
		<param-value>classpath:cxf-config.xml</param-value>
	</context-param>

We have named our CXF configuration file cxf-config.xml and its located in the root of the classpath. In Maven land that is we can have the cxf-config.xml file in the src/main/resources folder. We could also have the file located in the WEB-INF folder for instance <param-value>/WEB-INF/cxf-config.xml</param-value>.

Getting rid of the old jsp world

The maven archetype that created the basic folder structure also created a sample .jsp file index.jsp. This file src/main/webapp/index.jsp should be deleted.

Configuration of CXF

The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:jaxws="http://cxf.apache.org/jaxws"
       xsi:schemaLocation="
            http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
            http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

    <import resource="classpath:META-INF/cxf/cxf.xml"/>
    <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
    <import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

    <!-- implementation of the webservice -->
    <bean id="reportIncidentEndpoint" class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl"/>

    <!-- export the webservice using jaxws -->
    <jaxws:endpoint id="reportIncident"
                    implementor="#reportIncidentEndpoint"
                    address="/incident"
                    wsdlLocation="/WEB-INF/wsdl/report_incident.wsdl"
                    endpointName="s:ReportIncidentPort"
                    serviceName="s:ReportIncidentService"
                    xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

The configuration is standard CXF and is documented at the Apache CXF website.

The 3 import elements is needed by CXF and they must be in the file.

Noticed that we have a spring bean reportIncidentEndpoint that is the implementation of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use the # mark to identify its a reference to a spring bean. We could have stated the classname directly as implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint" but then we lose the ability to let the ReportIncidentEndpoint be configured by spring.
The address attribute defines the relative part of the URL of the exposed webservice. wsdlLocation is an optional parameter but for persons like me that likes contract-first we want to expose our own .wsdl contracts and not the auto generated by the frameworks, so with this attribute we can link to the real .wsdl file. The last stuff is needed by CXF as you could have several services so it needs to know which this one is. Configuring these is quite easy as all the information is in the wsdl already.

Implementing the ReportIncidentEndpoint

Phew after all these meta files its time for some java code so we should code the implementor of the webservice. So we fire up mvn compile to let CXF generate the POJO classes for our webservice and we are ready to fire up a Java editor.

You can use mvn idea:idea or mvn eclipse:eclipse to create project files for these editors so you can load the project. However IDEA has been smarter lately and can load a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and dirty as it can get. At first beware that since its jaxws and Java 1.5 we get annotations for the money, but they reside on the interface so we can remove them from our implementations so its a nice plain POJO again:

package org.apache.camel.example.reportincident;

/**
 * The webservice we have implemented.
 */
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        System.out.println("Hello ReportIncidentEndpointImpl is called from " + parameters.getGivenName());

        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

}

We just output the person that invokes this webservice and returns a OK response. This class should be in the maven source root folder src/main/java under the package name org.apache.camel.example.reportincident. Beware that the maven archetype tool didn't create the src/main/java folder, so you should create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice

Now that the code compiles we would like to run it inside a web container, for this purpose we make use of Jetty which we will bootstrap using it's plugin org.mortbay.jetty:maven-jetty-plugin:

       <build>
           <plugins>
               ...
               <!-- so we can run mvn jetty:run -->
               <plugin>
                   <groupId>org.mortbay.jetty</groupId>
                   <artifactId>maven-jetty-plugin</artifactId>
                   <version>${jetty-version}</version>
               </plugin>

Notice: We make use of the Jetty version being defined inside the Camel's Parent POM.

So to see if everything is in order we fire up jetty with mvn jetty:run and if everything is okay you should be able to access http://localhost:8080.
Jetty is smart that it will list the correct URI on the page to our web application, so just click on the link. This is smart as you don't have to remember the exact web context URI for your application - just fire up the default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the web.xml to instruct the CXF servlet to accept the pattern /webservices/* we should hit this URL to get the attention of CXF: http://localhost:8080/camel-example-reportincident/webservices.

 

Hitting the webservice

Now we have the webservice running in a standard .war application in a standard web container such as Jetty we would like to invoke the webservice and see if we get our code executed. Unfortunately this isn't the easiest task in the world - its not so easy as a REST URL, so we need tools for this. So we fire up our trusty webservice tool SoapUI and let it be the one to fire the webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the expected OK response and the console outputs the System.out so we are ready to code.

 

Remote Debugging

Okay a little sidestep but wouldn't it be cool to be able to debug your code when its fired up under Jetty? As Jetty is started from maven, we need to instruct maven to use debug mode.
Se we set the MAVEN_OPTS environment to start in debug mode and listen on port 5005.

MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Then you need to restart Jetty so its stopped with ctrl + c. Remember to start a new shell to pickup the new environment settings. And start jetty again.

Then we can from our IDE attach a remote debugger and debug as we want.
First we configure IDEA to attach to a remote debugger on port 5005:

 

Then we set a breakpoint in our code ReportIncidentEndpoint and hit the SoapUI once again and we are breaked at the breakpoint where we can inspect the parameters:

 

Adding a unit test

Oh so much hard work just to hit a webservice, why can't we just use an unit test to invoke our webservice? Yes of course we can do this, and that's the next step.
First we create the folder structure src/test/java and src/test/resources. We then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;

import junit.framework.TestCase;

/**
 * Plain JUnit test of our webservice.
 */
public class ReportIncidentEndpointTest extends TestCase {

}

Here we have a plain old JUnit class. As we want to test webservices we need to start and expose our webservice in the unit test before we can test it. And JAXWS has pretty decent methods to help us here, the code is simple as:

    import javax.xml.ws.Endpoint;
    ...

    private static String ADDRESS = "http://localhost:9090/unittest";

    protected void startServer() throws Exception {
        // We need to start a server that exposes or webservice during the unit testing
        // We use jaxws to do this pretty simple
        ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl();
        Endpoint.publish(ADDRESS, server);
    }

The Endpoint class is the javax.xml.ws.Endpoint that under the covers looks for a provider and in our case its CXF - so its CXF that does the heavy lifting of exposing out webservice on the given URL address. Since our class ReportIncidentEndpointImpl implements the interface ReportIncidentEndpoint that is decorated with all the jaxws annotations it got all the information it need to expose the webservice. Below is the CXF wsdl2java generated interface:


/*
 * 
 */

package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**
 * This class was generated by Apache CXF 2.1.1
 * Wed Jul 16 12:40:31 CEST 2008
 * Generated source version: 2.1.1
 * 
 */
 
 /*
  * 
  */


@WebService(targetNamespace = "http://reportincident.example.camel.apache.org", name = "ReportIncidentEndpoint")
@XmlSeeAlso({ObjectFactory.class})
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*
 * 
 */

    @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
    @WebResult(name = "outputReportIncident", targetNamespace = "http://reportincident.example.camel.apache.org", partName = "parameters")
    @WebMethod(operationName = "ReportIncident", action = "http://reportincident.example.camel.apache.org/ReportIncident")
    public OutputReportIncident reportIncident(
        @WebParam(partName = "parameters", name = "inputReportIncident", targetNamespace = "http://reportincident.example.camel.apache.org")
        InputReportIncident parameters
    );
}

Next up is to create a webservice client so we can invoke our webservice. For this we actually use the CXF framework directly as its a bit more easier to create a client using this framework than using the JAXWS style. We could have done the same for the server part, and you should do this if you need more power and access more advanced features.

    import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
    ...
    
    protected ReportIncidentEndpoint createCXFClient() {
        // we use CXF to create a client for us as its easier than JAXWS and works
        JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
        factory.setServiceClass(ReportIncidentEndpoint.class);
        factory.setAddress(ADDRESS);
        return (ReportIncidentEndpoint) factory.create();
    }

So now we are ready for creating a unit test. We have the server and the client. So we just create a plain simple unit test method as the usual junit style:

    public void testRendportIncident() throws Exception {
        startServer();

        ReportIncidentEndpoint client = createCXFClient();

        InputReportIncident input = new InputReportIncident();
        input.setIncidentId("123");
        input.setIncidentDate("2008-07-16");
        input.setGivenName("Claus");
        input.setFamilyName("Ibsen");
        input.setSummary("bla bla");
        input.setDetails("more bla bla");
        input.setEmail("davsclaus@apache.org");
        input.setPhone("+45 2962 7576");

        OutputReportIncident out = client.reportIncident(input);
        assertEquals("Response code is wrong", "OK", out.getCode());
    }

Now we are nearly there. But if you run the unit test with mvn test then it will fail. Why!!! Well its because that CXF needs is missing some dependencies during unit testing. In fact it needs the web container, so we need to add this to our pom.xml.

    <!-- cxf web container for unit testing -->
    <dependency>
        <groupId>org.apache.cxf</groupId>
        <artifactId>cxf-rt-transports-http-jetty</artifactId>
        <version>${cxf-version}</version>
        <scope>test</scope>
    </dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how agile, embedable and popular Jetty is.

So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

End of part 1

Thanks for being patient and reading all this more or less standard Maven, Spring, JAXWS and Apache CXF stuff. Its stuff that is well covered on the net, but I wanted a full fledged tutorial on a maven project setup that is web service ready with Apache CXF. We will use this as a base for the next part where we demonstrate how Camel can be digested slowly and piece by piece just as it was back in the times when was introduced and was learning the Spring framework that we take for granted today.

#Resources

Links

Part 2

Adding Camel

In this part we will introduce Camel so we start by adding Camel to our pom.xml:

       <properties>
            ...
            <camel-version>1.4.0</camel-version>
        </properties>

        <!-- camel -->
        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-core</artifactId>
            <version>${camel-version}</version>
        </dependency>

That's it, only one dependency for now.

Synchronize IDE

If you continue from part 1, remember to update your editor project settings since we have introduce new .jar files. For instance IDEA has a feature to synchronize with Maven projects.

Now we turn towards our webservice endpoint implementation where we want to let Camel have a go at the input we receive. As Camel is very non invasive its basically a .jar file then we can just grap Camel but creating a new instance of DefaultCamelContext that is the hearth of Camel its context.

CamelContext camel = new DefaultCamelContext();

In fact we create a constructor in our webservice and add this code:

    private CamelContext camel;

    public ReportIncidentEndpointImpl() throws Exception {
        // create the camel context that is the "heart" of Camel
        camel = new DefaultCamelContext();

        // add the log component
        camel.addComponent("log", new LogComponent());

        // start Camel
        camel.start();
    }

Logging the "Hello World"

Here at first we want Camel to log the givenName and familyName parameters we receive, so we add the LogComponent with the key log. And we must start Camel before its ready to act.

Component Documentation

The Log and File components is documented as well, just click on the links. Just return to this documentation later when you must use these components for real.

Then we change the code in the method that is invoked by Apache CXF when a webservice request arrives. We get the name and let Camel have a go at it in the new method we create sendToCamel:

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        String name = parameters.getGivenName() + " " + parameters.getFamilyName();

        // let Camel do something with the name
        sendToCamelLog(name);

        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

Next is the Camel code. At first it looks like there are many code lines to do a simple task of logging the name - yes it is. But later you will in fact realize this is one of Camels true power. Its concise API. Hint: The same code can be used for any component in Camel.

    private void sendToCamelLog(String name) {
        try {
            // get the log component
            Component component = camel.getComponent("log");

            // create an endpoint and configure it.
            // Notice the URI parameters this is a common pratice in Camel to configure
            // endpoints based on URI.
            // com.mycompany.part2 = the log category used. Will log at INFO level as default
            Endpoint endpoint = component.createEndpoint("log:com.mycompany.part2");

            // create an Exchange that we want to send to the endpoint
            Exchange exchange = endpoint.createExchange();
            // set the in message payload (=body) with the name parameter
            exchange.getIn().setBody(name);

            // now we want to send the exchange to this endpoint and we then need a producer
            // for this, so we create and start the producer.
            Producer producer = endpoint.createProducer();
            producer.start();
            // process the exchange will send the exchange to the log component, that will process
            // the exchange and yes log the payload
            producer.process(exchange);

            // stop the producer, we want to be nice and cleanup
            producer.stop();




        } catch (Exception e) {
            // we ignore any exceptions and just rethrow as runtime
            throw new RuntimeException(e);

        }
    }

Okay there are code comments in the code block above that should explain what is happening. We run the code by invoking our unit test with maven mvn test, and we should get this log line:

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

Write to file - easy with the same code style

Okay that isn't to impressive, Camel can log (wink) Well I promised that the above code style can be used for any component, so let's store the payload in a file. We do this by adding the file component to the Camel context

        // add the file component
        camel.addComponent("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by creating a new method sendToCamelFile. We want to store the payload in filename with the incident id so we need this parameter also:

        // let Camel do something with the name
        sendToCamelLog(name);
        sendToCamelFile(parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI configuration when we create the endpoint as we pass in configuration parameters to the file component.
And then we need to set the output filename and this is done by adding a special header to the exchange. That's the only difference:

    private void sendToCamelFile(String incidentId, String name) {
        try {
            // get the file component
            Component component = camel.getComponent("file");

            // create an endpoint and configure it.
            // Notice the URI parameters this is a common pratice in Camel to configure
            // endpoints based on URI.
            // file://target instructs the base folder to output the files. We put in the target folder
            // then its actumatically cleaned by mvn clean
            Endpoint endpoint = component.createEndpoint("file://target");

            // create an Exchange that we want to send to the endpoint
            Exchange exchange = endpoint.createExchange();
            // set the in message payload (=body) with the name parameter
            exchange.getIn().setBody(name);

            // now a special header is set to instruct the file component what the output filename
            // should be
            exchange.getIn().setHeader(FileComponent.HEADER_FILE_NAME, "incident-" + incidentId + ".txt");

            // now we want to send the exchange to this endpoint and we then need a producer
            // for this, so we create and start the producer.
            Producer producer = endpoint.createProducer();
            producer.start();
            // process the exchange will send the exchange to the file component, that will process
            // the exchange and yes write the payload to the given filename
            producer.process(exchange);

            // stop the producer, we want to be nice and cleanup
            producer.stop();
        } catch (Exception e) {
            // we ignore any exceptions and just rethrow as runtime
            throw new RuntimeException(e);
        }
    }

After running our unit test again with mvn test we have a output file in the target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

Fully java based configuration of endpoints

In the file example above the configuration was URI based. What if you want 100% java setter based style, well this is of course also possible. We just need to cast to the component specific endpoint and then we have all the setters available:

            // create the file endpoint, we cast to FileEndpoint because then we can do
            // 100% java settter based configuration instead of the URI sting based
            // must pass in an empty string, or part of the URI configuration if wanted 
            FileEndpoint endpoint = (FileEndpoint)component.createEndpoint("");
            endpoint.setFile(new File("target/subfolder"));
            endpoint.setAutoCreate(true);

That's it. Now we have used the setters to configure the FileEndpoint that it should store the file in the folder target/subfolder. Of course Camel now stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

Lessons learned

Okay I wanted to demonstrate how you can be in 100% control of the configuration and usage of Camel based on plain Java code with no hidden magic or special XML or other configuration files. Just add the camel-core.jar and you are ready to go.

You must have noticed that the code for sending a message to a given endpoint is the same for both the log and file, in fact any Camel endpoint. You as the client shouldn't bother with component specific code such as file stuff for file components, jms stuff for JMS messaging etc. This is what the Message Endpoint EIP pattern is all about and Camel solves this very very nice - a key pattern in Camel.

Reducing code lines

Now that you have been introduced to Camel and one of its masterpiece patterns solved elegantly with the Message Endpoint its time to give productive and show a solution in fewer code lines, in fact we can get it down to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based producer. Meaning that it has methods to send messages to any Camel endpoints. First of all we need to get hold of such a template and this is done from the CamelContext

    private ProducerTemplate template;

    public ReportIncidentEndpointImpl() throws Exception {
        ...

        // get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer for very
        // easy sending exchanges to Camel.
        template = camel.createProducerTemplate();

        // start Camel
        camel.start();
    }

Now we can use template for sending payloads to any endpoint in Camel. So all the logging gabble can be reduced to:

    template.sendBody("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct what the output filename should be:

    String filename = "easy-incident-" + incidentId + ".txt";
    template.sendBodyAndHeader("file://target/subfolder", name, FileComponent.HEADER_FILE_NAME, filename);

Reducing even more code lines

Well we got the Camel code down to 1-2 lines for sending the message to the component that does all the heavy work of wring the message to a file etc. But we still got 5 lines to initialize Camel.

    camel = new DefaultCamelContext();
    camel.addComponent("log", new LogComponent());
    camel.addComponent("file", new FileComponent());
    template = camel.createProducerTemplate();
    camel.start();

This can also be reduced. All the standard components in Camel is auto discovered on-the-fly so we can remove these code lines and we are down to 3 lines.

Component auto discovery

When an endpoint is requested with a scheme that Camel hasn't seen before it will try to look for it in the classpath. It will do so by looking for special Camel component marker files that reside in the folder META-INF/services/org/apache/camel/component. If there are files in this folder it will read them as the filename is the scheme part of the URL. For instance the log component is defined in this file META-INF/services/org/apache/component/log and its content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same technique and have them been auto discovered on-the-fly.

Okay back to the 3 code lines:

    camel = new DefaultCamelContext();
    template = camel.createProducerTemplate();
    camel.start();

Later will we see how we can reduce this to ... in fact 0 java code lines. But the 3 lines will do for now.

Message Translation

Okay lets head back to the over goal of the integration. Looking at the EIP diagrams at the introduction page we need to be able to translate the incoming webservice to an email. Doing so we need to create the email body. When doing the message translation we could put up our sleeves and do it manually in pure java with a StringBuilder such as:

    private String createMailBody(InputReportIncident parameters) {
        StringBuilder sb = new StringBuilder();
        sb.append("Incident ").append(parameters.getIncidentId());
        sb.append(" has been reported on the ").append(parameters.getIncidentDate());
        sb.append(" by ").append(parameters.getGivenName());
        sb.append(" ").append(parameters.getFamilyName());
        
        // and the rest of the mail body with more appends to the string builder
        
        return sb.toString();
    }

But as always it is a hardcoded template for the mail body and the code gets kinda ugly if the mail message has to be a bit more advanced. But of course it just works out-of-the-box with just classes already in the JDK.

Lets use a template language instead such as Apache Velocity. As Camel have a component for Velocity integration we will use this component. Looking at the Component List overview we can see that camel-velocity component uses the artifactId camel-velocity so therefore we need to add this to the pom.xml

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-velocity</artifactId>
            <version>${camel-version}</version>
        </dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring 2.0.8 and camel-velocity is dependent on Spring 2.5.5. To remedy this we could wrestle with the pom.xml with excludes settings in the dependencies or just bring in another dependency camel-spring:

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-spring</artifactId>
            <version>${camel-version}</version>
        </dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it in nearly all situations - we will look into how well Camel is seamless integration with Spring in part 3. For now its just another dependency.

We create the mail body with the Velocity template and create the file src/main/resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by $body.givenName $body.familyName.

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the following 3 code lines:

    private void generateEmailBodyAndStoreAsFile(InputReportIncident parameters) {
        // generate the mail body using velocity template
        // notice that we just pass in our POJO (= InputReportIncident) that we
        // got from Apache CXF to Velocity.
        Object response = template.sendBody("velocity:MailBody.vm", parameters);
        // Note: the response is a String and can be cast to String if needed

        // store the mail in a file
        String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
        template.sendBodyAndHeader("file://target/subfolder", response, FileComponent.HEADER_FILE_NAME, filename);
    }

What is impressive is that we can just pass in our POJO object we got from Apache CXF to Velocity and it will be able to generate the mail body with this object in its context. Thus we don't need to prepare anything before we let Velocity loose and generate our mail body. Notice that the template method returns a object with out response. This object contains the mail body as a String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has produced the file and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

First part of the solution

What we have seen here is actually what it takes to build the first part of the integration flow. Receiving a request from a webservice, transform it to a mail body and store it to a file, and return an OK response to the webservice. All possible within 10 lines of code. So lets wrap it up here is what it takes:

/**
 * The webservice we have implemented.
 */
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

    private CamelContext camel;
    private ProducerTemplate template;

    public ReportIncidentEndpointImpl() throws Exception {
        // create the camel context that is the "heart" of Camel
        camel = new DefaultCamelContext();

        // get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer for very
        // easy sending exchanges to Camel.
        template = camel.createProducerTemplate();

        // start Camel
        camel.start();
    }

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        // transform the request into a mail body
        Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

        // store the mail body in a file
        String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
        template.sendBodyAndHeader("file://target/subfolder", mailBody, FileComponent.HEADER_FILE_NAME, filename);

        // return an OK reply
        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

}

Okay I missed by one, its in fact only 9 lines of java code and 2 fields.

End of part 2

I know this is a bit different introduction to Camel to how you can start using it in your projects just as a plain java .jar framework that isn't invasive at all. I took you through the coding parts that requires 6 - 10 lines to send a message to an endpoint, buts it's important to show the Message Endpoint EIP pattern in action and how its implemented in Camel. Yes of course Camel also has to one liners that you can use, and will use in your projects for sending messages to endpoints. This part has been about good old plain java, nothing fancy with Spring, XML files, auto discovery, OGSi or other new technologies. I wanted to demonstrate the basic building blocks in Camel and how its setup in pure god old fashioned Java. There are plenty of eye catcher examples with one liners that does more than you can imagine - we will come there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets interesting since we have to wrestle with the event driven consumer.
Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us some fun with the Camel. See you in part 3.

Links

Part 3

Recap

Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

    private CamelContext camel;
    private ProducerTemplate template;

    public ReportIncidentEndpointImpl() throws Exception {
        // create the camel context that is the "heart" of Camel
        camel = new DefaultCamelContext();

        // get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer for very
        // easy sending exchanges to Camel.
        template = camel.createProducerTemplate();

        // start Camel
        camel.start();
    }

    /**
     * This is the last solution displayed that is the most simple
     */
    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        // transform the request into a mail body
        Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

        // store the mail body in a file
        String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
        template.sendBodyAndHeader("file://target/subfolder", mailBody, FileComponent.HEADER_FILE_NAME, filename);

        // return an OK reply
        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

}

This completes the first part of the solution: receiving the message using webservice, transform it to a mail body and store it as a text file.
What is missing is the last part that polls the text files and send them as emails. Here is where some fun starts, as this requires usage of the Event Driven Consumer EIP pattern to react when new files arrives. So lets see how we can do this in Camel. There is a saying: Many roads lead to Rome, and that is also true for Camel - there are many ways to do it in Camel.

Adding the Event Driven Consumer

We want to add the consumer to our integration that listen for new files, we do this by creating a private method where the consumer code lives. We must register our consumer in Camel before its started so we need to add, and there fore we call the method addMailSenderConsumer in the constructor below:

    public ReportIncidentEndpointImpl() throws Exception {
        // create the camel context that is the "heart" of Camel
        camel = new DefaultCamelContext();

        // get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer for very
        // easy sending exchanges to Camel.
        template = camel.createProducerTemplate();

        // add the event driven consumer that will listen for mail files and process them
        addMailSendConsumer();

        // start Camel
        camel.start();
    }

The consumer needs to be consuming from an endpoint so we grab the endpoint from Camel we want to consume. It's file://target/subfolder. Don't be fooled this endpoint doesn't have to 100% identical to the producer, i.e. the endpoint we used in the previous part to create and store the files. We could change the URL to include some options, and to make it more clear that it's possible we setup a delay value to 10 seconds, and the first poll starts after 2 seconds. This is done by adding ?consumer.delay=10000&consumer.initialDelay=2000 to the URL.

URL Configuration

The URL configuration in Camel endpoints is just like regular URL we know from the Internet. You use ? and & to set the options.

When we have the endpoint we can create the consumer (just as in part 1 where we created a producer}. Creating the consumer requires a Processor where we implement the java code what should happen when a message arrives. To get the mail body as a String object we can use the getBody method where we can provide the type we want in return.

Camel Type Converter

Why don't we just cast it as we always do in Java? Well the biggest advantage when you provide the type as a parameter you tell Camel what type you want and Camel can automatically convert it for you, using its flexible Type Converter mechanism. This is a great advantage, and you should try to use this instead of regular type casting.

Sending the email is still left to be implemented, we will do this later. And finally we must remember to start the consumer otherwise its not active and won't listen for new files.

    private void addMailSendConsumer() throws Exception {
        // Grab the endpoint where we should consume. Option - the first poll starts after 2 seconds
        Endpoint endpint = camel.getEndpoint("file://target/subfolder?consumer.initialDelay=2000");

        // create the event driven consumer
        // the Processor is the code what should happen when there is an event
        // (think it as the onMessage method)
        Consumer consumer = endpint.createConsumer(new Processor() {
            public void process(Exchange exchange) throws Exception {
                // get the mail body as a String
                String mailBody = exchange.getIn().getBody(String.class);

                // okay now we are read to send it as an email
                System.out.println("Sending email..." + mailBody);
            }
        });

        // star the consumer, it will listen for files
        consumer.start();
    }

Before we test it we need to be aware that our unit test is only catering for the first part of the solution, receiving the message with webservice, transforming it using Velocity and then storing it as a file - it doesn't test the Event Driven Consumer we just added. As we are eager to see it in action, we just do a common trick adding some sleep in our unit test, that gives our Event Driven Consumer time to react and print to System.out. We will later refine the test:

    public void testRendportIncident() throws Exception {
       ...

        OutputReportIncident out = client.reportIncident(input);
        assertEquals("Response code is wrong", "OK", out.getCode());

        // give the event driven consumer time to react
        Thread.sleep(10 * 1000);
    }

We run the test with mvn clean test and have eyes fixed on the console output.
During all the output in the console, we see that our consumer has been triggered, as we want.

2008-07-19 12:09:24,140 [mponent@1f12c4e] DEBUG FileProcessStrategySupport - Locking the file: target\subfolder\mail-incident-123.txt ...
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1f12c4e] DEBUG FileConsumer - Done processing file: target\subfolder\mail-incident-123.txt. Status is: OK

Sending the email

Sending the email requires access to a SMTP mail server, but the implementation code is very simple:

    private void sendEmail(String body) {
        // send the email to your mail server
        String url = "smtp://someone@localhost?password=secret&to=incident@mycompany.com";
        template.sendBodyAndHeader(url, body, "subject", "New incident reported");
    }

And just invoke the method from our consumer:

    // okay now we are read to send it as an email
    System.out.println("Sending email...");
    sendEmail(mailBody);
    System.out.println("Email sent");

Unit testing mail

For unit testing the consumer part we will use a mock mail framework, so we add this to our pom.xml:

        <!-- unit testing mail using mock -->
        <dependency>
            <groupId>org.jvnet.mock-javamail</groupId>
            <artifactId>mock-javamail</artifactId>
            <version>1.7</version>
            <scope>test</scope>
        </dependency>

Then we prepare our integration to run with or without the consumer enabled. We do this to separate the route into the two parts:

  • receive the webservice, transform and save mail file and return OK as repose
  • the consumer that listen for mail files and send them as emails

So we change the constructor code a bit:

    public ReportIncidentEndpointImpl() throws Exception {
        init(true);
    }

    public ReportIncidentEndpointImpl(boolean enableConsumer) throws Exception {
        init(enableConsumer);
    }

    private void init(boolean enableConsumer) throws Exception {
        // create the camel context that is the "heart" of Camel
        camel = new DefaultCamelContext();

        // get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer for very
        // easy sending exchanges to Camel.
        template = camel.createProducerTemplate();

        // add the event driven consumer that will listen for mail files and process them
        if (enableConsumer) {
            addMailSendConsumer();
        }

        // start Camel
        camel.start();
    }

Then remember to change the ReportIncidentEndpointTest to pass in false in the ReportIncidentEndpointImpl constructor.
And as always run mvn clean test to be sure that the latest code changes works.

Adding new unit test

We are now ready to add a new unit test that tests the consumer part so we create a new test class that has the following code structure:

/**
 * Plain JUnit test of our consumer.
 */
public class ReportIncidentConsumerTest extends TestCase {

    private ReportIncidentEndpointImpl endpoint;

    public void testConsumer() throws Exception {
        // we run this unit test with the consumer, hence the true parameter
        endpoint = new ReportIncidentEndpointImpl(true);
   }

}

As we want to test the consumer that it can listen for files, read the file content and send it as an email to our mailbox we will test it by asserting that we receive 1 mail in our mailbox and that the mail is the one we expect. To do so we need to grab the mailbox with the mockmail API. This is done as simple as:

    public void testConsumer() throws Exception {
        // we run this unit test with the consumer, hence the true parameter
        endpoint = new ReportIncidentEndpointImpl(true);

        // get the mailbox
        Mailbox box = Mailbox.get("incident@mycompany.com");
        assertEquals("Should not have mails", 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen for. So we could use plain java.io.File API to create the file, but wait isn't there an smarter solution? ... yes Camel of course. Camel can do amazing stuff in one liner codes with its ProducerTemplate, so we need to get a hold of this baby. We expose this template in our ReportIncidentEndpointImpl but adding this getter:

    protected ProducerTemplate getTemplate() {
        return template;
    }

Then we can use the template to create the file in one code line:

        // drop a file in the folder that the consumer listen
        // here is a trick to reuse Camel! so we get the producer template and just
        // fire a message that will create the file for us
        endpoint.getTemplate().sendBodyAndHeader("file://target/subfolder?append=false", "Hello World",
            FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

Then we just need to wait a little for the consumer to kick in and do its work and then we should assert that we got the new mail. Easy as just:

        // let the consumer have time to run
        Thread.sleep(3 * 1000);

        // get the mock mailbox and check if we got mail ;)
        assertEquals("Should have got 1 mail", 1, box.size());
        assertEquals("Subject wrong", "New incident reported", box.get(0).getSubject());
        assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());
    }

The final class for the unit test is:

/**
 * Plain JUnit test of our consumer.
 */
public class ReportIncidentConsumerTest extends TestCase {

    private ReportIncidentEndpointImpl endpoint;

    public void testConsumer() throws Exception {
        // we run this unit test with the consumer, hence the true parameter
        endpoint = new ReportIncidentEndpointImpl(true);

        // get the mailbox
        Mailbox box = Mailbox.get("incident@mycompany.com");
        assertEquals("Should not have mails", 0, box.size());

        // drop a file in the folder that the consumer listen
        // here is a trick to reuse Camel! so we get the producer template and just
        // fire a message that will create the file for us
        endpoint.getTemplate().sendBodyAndHeader("file://target/subfolder?append=false", "Hello World",
            FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

        // let the consumer have time to run
        Thread.sleep(3 * 1000);

        // get the mock mailbox and check if we got mail ;)
        assertEquals("Should have got 1 mail", 1, box.size());
        assertEquals("Subject wrong", "New incident reported", box.get(0).getSubject());
        assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());
    }

}

End of part 3

Okay we have reached the end of part 3. For now we have only scratched the surface of what Camel is and what it can do. We have introduced Camel into our integration piece by piece and slowly added more and more along the way. And the most important is: you as the developer never lost control. We hit a sweet spot in the webservice implementation where we could write our java code. Adding Camel to the mix is just to use it as a regular java code, nothing magic. We were in control of the flow, we decided when it was time to translate the input to a mail body, we decided when the content should be written to a file. This is very important to not lose control, that the bigger and heavier frameworks tend to do. No names mentioned, but boy do developers from time to time dislike these elephants. And Camel is no elephant.

I suggest you download the samples from part 1 to 3 and try them out. It is great basic knowledge to have in mind when we look at some of the features where Camel really excel - the routing domain language.

From part 1 to 3 we touched concepts such as::

Links

Part 4

Introduction

This section is about regular Camel. The examples presented here in this section is much more in common of all the examples we have in the Camel documentation.

If you have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again! (wink)

Routing

Camel is particular strong as a light-weight and agile routing and mediation framework. In this part we will introduce the routing concept and how we can introduce this into our solution.
Looking back at the figure from the Introduction page we want to implement this routing. Camel has support for expressing this routing logic using Java as a DSL (Domain Specific Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its the most powerful and all developers know Java. Later we will introduce the XML version that is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about Developers not loosing control. In my humble experience one of the key fears of developers is that they are forced into a tool/framework where they loose control and/or power, and the possible is now impossible. So in this part we stay clear with this vision and our starting point is as follows:

  • We have generated the webservice source code using the CXF wsdl2java generator and we have our ReportIncidentEndpointImpl.java file where we as a Developer feels home and have the power.

So the starting point is:

/**
 * The webservice we have implemented.
 */
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

    /**
     * This is the last solution displayed that is the most simple
     */
    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        // WE ARE HERE !!!
        return null;
    }

}

Yes we have a simple plain Java class where we have the implementation of the webservice. The cursor is blinking at the WE ARE HERE block and this is where we feel home. More or less any Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache CXF or some other quite popular framework. They all allow the developer to be in control and implement the code logic as plain Java code. Camel of course doesn't enforce this to be any different. Okay the boss told us to implement the solution from the figure in the Introduction page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy lifting of supporting EIP verbs for end-users to express the routing. It does take a little while to get settled and used to, but when you have worked with it for a while you will enjoy its power and realize it is in fact a little language inside Java itself. Camel is the only integration framework we are aware of that has Java DSL, all the others are usually only XML based.

As an end-user you usually use the RouteBuilder as of follows:

  • create your own Route class that extends RouteBuilder
  • implement your routing DSL in the configure method

So we create a new class ReportIncidentRoutes and implement the first part of the routing:

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

    public void configure() throws Exception {
        // direct:start is a internal queue to kick-start the routing in our example
        // we use this as the starting point where you can send messages to direct:start
        from("direct:start")
            // to is the destination we send the message to our velocity endpoint
            // where we transform the mail body
            .to("velocity:MailBody.vm");
    }

}

What to notice here is the configure method. Here is where all the action is. Here we have the Java DSL langauge, that is expressed using the fluent builder syntax that is also known from Hibernate when you build the dynamic queries etc. What you do is that you can stack methods separating with the dot.

In the example above we have a very common routing, that can be distilled from pseudo verbs to actual code with:

  • from A to B
  • From Endpoint A To Endpoint B
  • from("endpointA").to("endpointB")
  • from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It will wait for messages to arrive on the direct queue and then dispatch the message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity generate the mail body response.

So what we have implemented so far with our ReportIncidentRoutes RouteBuilder is this part of the picture:

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the hearth of Camel. So turning back to our webservice implementation class ReportIncidentEndpointImpl we add this constructor to the code, to create the CamelContext and add the routes from our route builder and finally to start it.

    private CamelContext context;

    public ReportIncidentEndpointImpl() throws Exception {
        // create the context
        context = new DefaultCamelContext();

        // append the routes to the context
        context.addRoutes(new ReportIncidentRoutes());

        // at the end start the camel context
        context.start();
    }

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to send messages to Endpoints, so we just send to the direct:start endpoint and it will take it from there.
So we implement the logic in our webservice operation:

    /**
     * This is the last solution displayed that is the most simple
     */
    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        Object mailBody = context.createProducerTemplate().sendBody("direct:start", parameters);
        System.out.println("Body:" + mailBody);

        // return an OK reply
        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

Notice that we get the producer template using the createProducerTemplate method on the CamelContext. Then we send the input parameters to the direct:start endpoint and it will route it to the velocity endpoint that will generate the mail body. Since we use direct as the consumer endpoint (=from) and its a synchronous exchange we will get the response back from the route. And the response is of course the output from the velocity endpoint.

About creating ProducerTemplate

In the example above we create a new ProducerTemplate when the reportIncident method is invoked. However in reality you should only create the template once and re-use it. See this FAQ entry.

We have now completed this part of the picture:

Unit testing

Now is the time we would like to unit test what we got now. So we call for camel and its great test kit. For this to work we need to add it to the pom.xml

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-core</artifactId>
            <version>1.4.0</version>
            <scope>test</scope>
            <type>test-jar</type>
        </dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar. Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class ContextTestSupport

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
 * Unit test of our routes
 */
public class ReportIncidentRoutesTest extends ContextTestSupport {

}

ContextTestSupport is a supporting unit test class for much easier unit testing with Apache Camel. The class is extending JUnit TestCase itself so you get all its glory. What we need to do now is to somehow tell this unit test class that it should use our route builder as this is the one we gonna test. So we do this by implementing the createRouteBuilder method.

    @Override
    protected RouteBuilder createRouteBuilder() throws Exception {
        return new ReportIncidentRoutes();
    }

That is easy just return an instance of our route builder and this unit test will use our routes.

It is quite common in Camel itself to unit test using routes defined as an anonymous inner class, such as illustrated below:

    protected RouteBuilder createRouteBuilder() throws Exception {
        return new RouteBuilder() {
            public void configure() throws Exception {
                // TODO: Add your routes here, such as:
                from("jms:queue:inbox").to("file://target/out");
            }
        };
    }

The same technique is of course also possible for end-users of Camel to create parts of your routes and test them separately in many test classes.
However in this tutorial we test the real route that is to be used for production, so we just return an instance of the real one.

We then code our unit test method that sends a message to the route and assert that its transformed to the mail body using the Velocity template.

    public void testTransformMailBody() throws Exception {
        // create a dummy input with some input data
        InputReportIncident parameters = createInput();

        // send the message (using the sendBody method that takes a parameters as the input body)
        // to "direct:start" that kick-starts the route
        // the response is returned as the out object, and its also the body of the response
        Object out = context.createProducerTemplate().sendBody("direct:start", parameters);

        // convert the response to a string using camel converters. However we could also have casted it to
        // a string directly but using the type converters ensure that Camel can convert it if it wasn't a string
        // in the first place. The type converters in Camel is really powerful and you will later learn to
        // appreciate them and wonder why its not build in Java out-of-the-box
        String body = context.getTypeConverter().convertTo(String.class, out);

        // do some simple assertions of the mail body
        assertTrue(body.startsWith("Incident 123 has been reported on the 2008-07-16 by Claus Ibsen."));
    }

    /**
     * Creates a dummy request to be used for input
     */
    protected InputReportIncident createInput() {
        InputReportIncident input = new InputReportIncident();
        input.setIncidentId("123");
        input.setIncidentDate("2008-07-16");
        input.setGivenName("Claus");
        input.setFamilyName("Ibsen");
        input.setSummary("bla bla");
        input.setDetails("more bla bla");
        input.setEmail("davsclaus@apache.org");
        input.setPhone("+45 2962 7576");
        return input;
    }

Adding the File Backup

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn back to our route and the EIP patterns. We use the Pipes and Filters pattern here to chain the routing as:

    public void configure() throws Exception {
        from("direct:start")
            .to("velocity:MailBody.vm")
            // using pipes-and-filters we send the output from the previous to the next
            .to("file://target/subfolder");
     }

Notice that we just add a 2nd .to on the newline. Camel will default use the Pipes and Filters pattern here when there are multi endpoints chained liked this. We could have used the pipeline verb to let out stand out that its the Pipes and Filters pattern such as:

        from("direct:start")
            // using pipes-and-filters we send the output from the previous to the next
            .pipeline("velocity:MailBody.vm", "file://target/subfolder");

But most people are using the multi .to style instead.

We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also be created as the backup file. If we look in the target/subfolder we can see that something happened.
On my humble laptop it created this folder: target\subfolder\ID-claus-acer. So the file producer create a sub folder named ID-claus-acer what is this? Well Camel auto generates an unique filename based on the unique message id if not given instructions to use a fixed filename. In fact it creates another sub folder and name the file as: target\subfolder\ID-claus-acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What we want is to use our own filename instead of this auto generated filename. This is archived by adding a header to the message with the filename to use. So we need to add this to our route and compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant filename, just to verify that we are on the right path, to instruct the file producer what filename to use. The file producer uses a special header FileComponent.HEADER_FILE_NAME to set the filename.

What we do is to send the header when we "kick-start" the routing as the header will be propagated from the direct queue to the file producer. What we need to do is to use the ProducerTemplate.sendBodyAndHeader method that takes both a body and a header. So we change out webservice code to include the filename also:

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        // create the producer template to use for sending messages
        ProducerTemplate producer = context.createProducerTemplate();
        // send the body and the filename defined with the special header key 
        Object mailBody = producer.sendBodyAndHeader("direct:start", parameters, FileComponent.HEADER_FILE_NAME, "incident.txt");
        System.out.println("Body:" + mailBody);

        // return an OK reply
        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

However we could also have used the route builder itself to configure the constant filename as shown below:

    public void configure() throws Exception {
        from("direct:start")
            .to("velocity:MailBody.vm")
            // set the filename to a constant before the file producer receives the message
            .setHeader(FileComponent.HEADER_FILE_NAME, constant("incident.txt"))
            .to("file://target/subfolder");
     }

But Camel can be smarter and we want to dynamic set the filename based on some of the input parameters, how can we do this?
Well the obvious solution is to compute and set the filename from the webservice implementation, but then the webservice implementation has such logic and we want this decoupled, so we could create our own POJO bean that has a method to compute the filename. We could then instruct the routing to invoke this method to get the computed filename. This is a string feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no dependencies to Camel what so ever.

/**
 * Plain java class to be used for filename generation based on the reported incident
 */
public class FilenameGenerator {

    public String generateFilename(InputReportIncident input) {
        // compute the filename
        return "incident-" + input.getIncidentId() + ".txt";
    }

}

The class is very simple and we could easily create unit tests for it to verify that it works as expected. So what we want now is to let Camel invoke this class and its generateFilename with the input parameters and use the output as the filename. Pheeeww is this really possible out-of-the-box in Camel? Yes it is. So lets get on with the show. We have the code that computes the filename, we just need to call it from our route using the Bean Language:

    public void configure() throws Exception {
        from("direct:start")
            // set the filename using the bean language and call the FilenameGenerator class.
            // the 2nd null parameter is optional methodname, to be used to avoid ambiguity.
            // if not provided Camel will try to figure out the best method to invoke, as we
            // only have one method this is very simple
            .setHeader(FileComponent.HEADER_FILE_NAME, BeanLanguage.bean(FilenameGenerator.class, null))
            .to("velocity:MailBody.vm")
            .to("file://target/subfolder");
    }

Notice that we use the bean language where we supply the class with our bean to invoke. Camel will instantiate an instance of the class and invoke the suited method. For completeness and ease of code readability we add the method name as the 2nd parameter

            .setHeader(FileComponent.HEADER_FILE_NAME, BeanLanguage.bean(FilenameGenerator.class, "generateFilename"))

Then other developers can understand what the parameter is, instead of null.

Now we have a nice solution, but as a sidetrack I want to demonstrate the Camel has other languages out-of-the-box, and that scripting language is a first class citizen in Camel where it etc. can be used in content based routing. However we want it to be used for the filename generation.

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message header when we "kick-start" the route. But we want to learn new stuff so we look for a different solution using some of Camels many Languages. As OGNL is a favorite language of mine (used by WebWork) so we pick this baby for a Camel ride. For starters we must add it to our pom.xml:

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-ognl</artifactId>
            <version>${camel-version}</version>
        </dependency>

And remember to refresh your editor so you got the new .jars.
We want to construct the filename based on this syntax: mail-incident-#ID#.txt where #ID# is the incident id from the input parameters. As OGNL is a language that can invoke methods on bean we can invoke the getIncidentId() on the message body and then concat it with the fixed pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:

  • request is the IN message. See the OGNL for other predefined objects available
  • body is the body of the in message
  • incidentId will invoke the getIncidentId() method on the body.
    The rest is just more or less regular plain code where we can concat strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on our route so we turn back to our route, where we can add the OGNL expression:

    public void configure() throws Exception {
        from("direct:start")
            // we need to set the filename and uses OGNL for this
            .setHeader(FileComponent.HEADER_FILE_NAME, OgnlExpression.ognl("'mail-incident-' + request.body.incidentId + '.txt'"))
            // using pipes-and-filters we send the output from the previous to the next
            .pipeline("velocity:MailBody.vm", "file://target/subfolder");
    }

And since we are on Java 1.5 we can use the static import of ognl so we have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;
...
    .setHeader(FileComponent.HEADER_FILE_NAME, ognl("'mail-incident-' + request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the Bean Language we used previously.

Whatever worked for you we have now implemented the backup of the data files:

Sending the email

What we need to do before the solution is completed is to actually send the email with the mail body we generated and stored as a file. In the previous part we did this with a File consumer, that we manually added to the CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

    public void configure() throws Exception {
        // first part from the webservice -> file backup
        from("direct:start")
            .setHeader(FileComponent.HEADER_FILE_NAME, bean(FilenameGenerator.class, "generateFilename"))
            .to("velocity:MailBody.vm")
            .to("file://target/subfolder");

        // second part from the file backup -> send email
        from("file://target/subfolder")
            // set the subject of the email
            .setHeader("subject", constant("new incident reported"))
            // send the email
            .to("smtp://someone@localhost?password=secret&to=incident@mycompany.com");
    }

}

The last 3 lines of code does all this. It adds a file consumer from("file://target/subfolder"), sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

Conclusion

We have just briefly touched the routing in Camel and shown how to implement them using the fluent builder syntax in Java. There is much more to the routing in Camel than shown here, but we are learning step by step. We continue in part 5. See you there.

Links

Better JMS Transport for CXF Webservice using Apache Camel

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This article shows how to use Apache Camel to provide a better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using Camel for JMS is still a good idea if you want to use the rich feature of Camel for routing and other Integration Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some additional info on Christian Schneider´s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using the Camel transport for CXF. This is a camel module that registers with cxf as a new transport. It is quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
  <property name="bus" ref="cxf" />
  <property name="camelContext" ref="camelContext" />
  <property name="transportIds">
    <list>
      <value>http://cxf.apache.org/transports/camel</value>
    </list>
  </property>
</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in CXF address configurations. The bean references a bean cxf which will be already present in your config. The other refrenceis a camel context. We will later define this bean to provide the routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As ConnectionFactory you can simply set up the normal Factory your JMS provider offers or bind a JNDI ConnectionFactory. In this example we use the ConnectionFactory provided by ActiveMQ.

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
  <property name="brokerURL" value="tcp://localhost:61616" />
</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply call jms. If we need several JMSComponents we can differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
  <property name="connectionFactory" ref="jmsConnectionFactory" />
  <property name="useMessageIDAsCorrelationID" value="true" />
</bean>

You can find more details about the JMSComponent at the Camel Wiki. For example you find the complete configuration options and a JNDI sample there.

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl. The webservice client will be configured to use JMS directly. You can also use a direct: Endpoint and do the routing to JMS in the Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws" xmlns:customer="http://customerservice.example.com/"
  serviceName="customer:CustomerServiceService"
  endpointName="customer:CustomerServiceEndpoint"
  address="camel:jms:queue:CustomerService"
  serviceClass="com.example.customerservice.CustomerService">
</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl. The names we use are arbitrary and have no further function but we set them to look nice. The serviceclass points to the service interface that was generated from the wsdl. Now the important thing is address. Here we tell cxf to use the camel transport, use the JmsComponent who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext

As we do not need additional routing an empty CamelContext bean will suffice.

<camelContext id="camelContext" xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

Running the Example

  • Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while being able to also use the rich integration features of Apache Camel.

Tutorial using Axis 1.4 with Apache Camel

Removed from distribution

This example has been removed from Camel 2.9 onwards. Apache Axis 1.4 is a very old and unsupported framework. We encourage users to use CXF instead of Axis.

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel 1.5 distribution as examples/camel-example-axis.

Introduction

Apache Axis is/was widely used as a webservice framework. So in line with some of the other tutorials to demonstrate how Camel is not an invasive framework but is flexible and integrates well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4 deployed as web applications. This is a common solution. We use contract first so we have Axis generated source code from an existing wsdl file. Then we show how we introduce Spring and Camel to integrate with Axis.

This tutorial uses the following frameworks:

  • Maven 2.0.9
  • Apache Camel 1.5.0
  • Apache Axis 1.4
  • Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

        <dependency>
            <groupId>org.apache.axis</groupId>
            <artifactId>axis</artifactId>
            <version>1.4</version>
        </dependency>

        <dependency>
            <groupId>org.apache.axis</groupId>
            <artifactId>axis-jaxrpc</artifactId>
            <version>1.4</version>
        </dependency>

        <dependency>
            <groupId>org.apache.axis</groupId>
            <artifactId>axis-saaj</artifactId>
            <version>1.4</version>
        </dependency>

	<dependency>
	    <groupId>axis</groupId>
	    <artifactId>axis-wsdl4j</artifactId>
	    <version>1.5.1</version>
	</dependency>

	<dependency>
	    <groupId>commons-discovery</groupId>
	    <artifactId>commons-discovery</artifactId>
	    <version>0.4</version>
	</dependency> 

        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.14</version>
        </dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the source code based on the wsdl file:

<!-- to compile with 1.5 -->
	<plugin>
		<groupId>org.apache.maven.plugins</groupId>
		<artifactId>maven-compiler-plugin</artifactId>
		<configuration>
			<source>1.5</source>
			<target>1.5</target>
		</configuration>
	</plugin>

            <plugin>
               <groupId>org.codehaus.mojo</groupId>
               <artifactId>axistools-maven-plugin</artifactId>
               <configuration>
	          <sourceDirectory>src/main/resources/</sourceDirectory>
                  <packageSpace>com.mycompany.myschema</packageSpace>
                  <testCases>false</testCases>
                  <serverSide>true</serverSide>
                  <subPackageByFileName>false</subPackageByFileName>
               </configuration>
               <executions>
                 <execution>
                   <goals>
                     <goal>wsdl2java</goal>
                   </goals>
                 </execution>
               </executions>
            </plugin>

wsdl

We use the same .wsdl file as the Tutorial-Example-ReportIncident and copy it to src/main/webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
	xmlns:tns="http://reportincident.example.camel.apache.org"
	xmlns:xs="http://www.w3.org/2001/XMLSchema"
	xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
	xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
	targetNamespace="http://reportincident.example.camel.apache.org">

	<!-- Type definitions for input- and output parameters for webservice -->
	<wsdl:types>
	<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
			<xs:element name="inputReportIncident">
				<xs:complexType>
					<xs:sequence>
						<xs:element type="xs:string"  name="incidentId"/>
						<xs:element type="xs:string"  name="incidentDate"/>
						<xs:element type="xs:string"  name="givenName"/>
						<xs:element type="xs:string"  name="familyName"/>
						<xs:element type="xs:string"  name="summary"/>
						<xs:element type="xs:string"  name="details"/>
						<xs:element type="xs:string"  name="email"/>
						<xs:element type="xs:string"  name="phone"/>
					</xs:sequence>
				</xs:complexType>
			</xs:element>
			<xs:element name="outputReportIncident">
				<xs:complexType>
					<xs:sequence>
						<xs:element type="xs:string" name="code"/>
					</xs:sequence>
				</xs:complexType>
			</xs:element>
		</xs:schema>
	</wsdl:types>

	<!-- Message definitions for input and output -->
	<wsdl:message name="inputReportIncident">
		<wsdl:part name="parameters" element="tns:inputReportIncident"/>
	</wsdl:message>
	<wsdl:message name="outputReportIncident">
		<wsdl:part name="parameters" element="tns:outputReportIncident"/>
	</wsdl:message>

	<!-- Port (interface) definitions -->
	<wsdl:portType name="ReportIncidentEndpoint">
		<wsdl:operation name="ReportIncident">
			<wsdl:input message="tns:inputReportIncident"/>
			<wsdl:output message="tns:outputReportIncident"/>
		</wsdl:operation>
	</wsdl:portType>

	<!-- Port bindings to transports and encoding - HTTP, document literal encoding is used -->
	<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
		<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
		<wsdl:operation name="ReportIncident">
			<soap:operation
				soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
				style="document"/>
			<wsdl:input>
				<soap:body parts="parameters" use="literal"/>
			</wsdl:input>
			<wsdl:output>
				<soap:body parts="parameters" use="literal"/>
			</wsdl:output>
		</wsdl:operation>
	</wsdl:binding>

	<!-- Service definition -->
	<wsdl:service name="ReportIncidentService">
		<wsdl:port name="ReportIncidentPort" binding="tns:ReportIncidentBinding">
			<soap:address location="http://reportincident.example.camel.apache.org"/>
		</wsdl:port>
	</wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For now we are still only using standard Axis and not Spring nor Camel. We still need to setup Axis as a web application so we configure the web.xml in src/main/webapp/WEB-INF/web.xml as:

    <servlet>
        <servlet-name>axis</servlet-name>
        <servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>
    </servlet>

    <servlet-mapping>
        <servlet-name>axis</servlet-name>
        <url-pattern>/services/*</url-pattern>
    </servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet mapping. We still need to configure Axis itself and this is done using its special configuration file server-config.wsdd. We nearly get this file for free if we let Axis generate the source code so we run the maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files to the following folder:

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our webservice we will add our code, so we create a new class AxisReportIncidentService that implements the port type interface where we can implement our code logic what happens when the webservice is invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
 * Axis webservice
 */
public class AxisReportIncidentService implements ReportIncidentService_PortType {

    public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
        System.out.println("Hello AxisReportIncidentService is called from " + parameters.getGivenName());

        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

}

Now we need to configure Axis itself and this is done using its server-config.wsdd file. We nearly get this for for free from the auto generated code, we copy the stuff from deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/" xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
  <!-- global configuration -->
	<globalConfiguration>
		<parameter name="sendXsiTypes" value="true"/>
		<parameter name="sendMultiRefs" value="true"/>
		<parameter name="sendXMLDeclaration" value="true"/>
		<parameter name="axis.sendMinimizedElements" value="true"/>
	</globalConfiguration>
	<handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

  <!-- this service is from deploy.wsdd -->
  <service name="ReportIncidentPort" provider="java:RPC" style="document" use="literal">
      <parameter name="wsdlTargetNamespace" value="http://reportincident.example.camel.apache.org"/>
      <parameter name="wsdlServiceElement" value="ReportIncidentService"/>
      <parameter name="schemaUnqualified" value="http://reportincident.example.camel.apache.org"/>
      <parameter name="wsdlServicePort" value="ReportIncidentPort"/>
      <parameter name="className" value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
      <parameter name="wsdlPortType" value="ReportIncidentService"/>
      <parameter name="typeMappingVersion" value="1.2"/>
      <operation name="reportIncident" qname="ReportIncident" returnQName="retNS:outputReportIncident" xmlns:retNS="http://reportincident.example.camel.apache.org"
                 returnType="rtns:>outputReportIncident" xmlns:rtns="http://reportincident.example.camel.apache.org"
                 soapAction="http://reportincident.example.camel.apache.org/ReportIncident" >
        <parameter qname="pns:inputReportIncident" xmlns:pns="http://reportincident.example.camel.apache.org"
                 type="tns:>inputReportIncident" xmlns:tns="http://reportincident.example.camel.apache.org"/>
      </operation>
      <parameter name="allowedMethods" value="reportIncident"/>

      <typeMapping
        xmlns:ns="http://reportincident.example.camel.apache.org"
        qname="ns:>outputReportIncident"
        type="java:org.apache.camel.example.reportincident.OutputReportIncident"
        serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
        deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
        encodingStyle=""
      />
      <typeMapping
        xmlns:ns="http://reportincident.example.camel.apache.org"
        qname="ns:>inputReportIncident"
        type="java:org.apache.camel.example.reportincident.InputReportIncident"
        serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
        deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
        encodingStyle=""
      />
  </service>

  <!-- part of Axis configuration -->
	<transport name="http">
		<requestFlow>
			<handler type="URLMapper"/>
			<handler type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
		</requestFlow>
	</transport>
</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so you gotta write that yourself. The service is a 100% copy from deploy.wsdd. Axis has more configuration to it than shown here, but then you should check the Axis documentation.

What we need to do now is important, as we need to modify the above configuration to use our webservice class than the default one, so we change the classname parameter to our class AxisReportIncidentService:

<parameter name="className" value="org.apache.camel.example.axis.AxisReportIncidentService"/>

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL: http://localhost:8080/camel-example-axis/services and you should see the famous Axis start page with the text And now... Some Services.

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not our original .wsdl file. So we need to fix this ASAP and this is done by configuring Axis in the server-config.wsdd file:

  <service name="ReportIncidentPort" provider="java:RPC" style="document" use="literal">
    <wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>
    ...

We do this by adding the wsdlFile tag in the service element where we can point to the real .wsdl file.

Integrating Spring

First we need to add its dependencies to the pom.xml.

        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-web</artifactId>
            <version>2.5.5</version>
        </dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context parameter to be able to configure precisely what spring xml files to use:

    <context-param>
        <param-name>contextConfigLocation</param-name>
        <param-value>
            classpath:axis-example-context.xml
        </param-value>
    </context-param>

    <listener>
        <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
    </listener>

Next is to add a plain spring XML file named axis-example-context.xml in the src/main/resources folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with mvn jetty:run just to make sure Spring was setup correctly.

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so we can get access to the glory spring, but how do we do this? And our webservice class AxisReportIncidentService is created and managed by Axis we want to let Spring do this. So we have two problems.

We solve these problems by creating a delegate class that Axis creates, and this delegate class gets hold on Spring and then gets our real webservice as a spring bean and invoke the service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
 * Our real service that is not tied to Axis
 */
public class ReportIncidentService  {

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        System.out.println("Hello ReportIncidentService is called from " + parameters.getGivenName());

        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

}

So now we need to get from AxisReportIncidentService to this one ReportIncidentService using Spring. Well first of all we add our real service to spring XML configuration file so Spring can handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
    
    <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportIncidentService to use Spring to lookup the spring bean id="incidentservice" and delegate the call. We do this by extending the spring class org.springframework.remoting.jaxrpc.ServletEndpointSupport so the refactored code is:

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
 * Axis webservice
 */
public class AxisReportIncidentService extends ServletEndpointSupport implements ReportIncidentService_PortType {

    public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
        // get hold of the spring bean from the application context
        ReportIncidentService service = (ReportIncidentService) getApplicationContext().getBean("incidentservice");

        // delegate to the real service
        return service.reportIncident(parameters);
    }

}

To see if everything is okay we run mvn jetty:run.

In the code above we get hold of our service at each request by looking up in the application context. However Spring also supports an init method where we can do this once. So we change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements ReportIncidentService_PortType {

    private ReportIncidentService service;

    @Override
    protected void onInit() throws ServiceException {
        // get hold of the spring bean from the application context
        service = (ReportIncidentService) getApplicationContext().getBean("incidentservice");
    }

    public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
        // delegate to the real service
        return service.reportIncident(parameters);
    }

}

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the maven pom.xml file:

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-core</artifactId>
            <version>1.5.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.camel</groupId>
            <artifactId>camel-spring</artifactId>
            <version>1.5.0</version>
        </dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works well with Spring.

Camel does not require Spring

Camel does not require Spring, we could easily have used Camel without Spring, but most users prefer to use Spring also.

We choose to integrate Camel in the Spring XML file so we add the camel namespace and the schema location:

xmlns:camel="http://activemq.apache.org/camel/schema/spring"
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/spring/camel-spring.xsd"

CamelContext

CamelContext is the heart of Camel its where all the routes, endpoints, components, etc. is registered. So we setup a CamelContext and the spring XML files looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:camel="http://activemq.apache.org/camel/schema/spring"
       xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
         http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

    <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

    <camel:camelContext id="camel">
        <!-- TODO: Here we can add Camel stuff -->
    </camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we want to send the file content as a message to an endpoint that produces the file. So we need to do two steps:

  • configure the file backup endpoint
  • send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

    <camel:camelContext id="camelContext">
        <!-- endpoint named backup that is configued as a file component -->
        <camel:endpoint id="backup" uri="file://target?append=false"/>
    </camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and configured it use the URL notation that we know from the internet. Its a file scheme that accepts a context and some options. The contest is target and its the folder to store the file. The option is just as the internet with ? and & for subsequent options. We configure it to not append, meaning than any existing file will be overwritten. See the File component for options and how to use the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way is to use a ProducerTemplate. A ProducerTemplate is inspired by Spring template pattern with for instance JmsTemplate or JdbcTemplate in mind. The template that all the grunt work and exposes a simple interface to the end-user where he/she can set the payload to send. Then the template will do proper resource handling and all related issues in that regard. But how do we get hold of such a template? Well the CamelContext is able to provide one. This is done by configuring the template on the camel context in the spring XML as:

    <camel:camelContext id="camelContext">
        <!-- producer template exposed with this id -->
        <camel:template id="camelTemplate"/>

        <!-- endpoint named backup that is configued as a file component -->
        <camel:endpoint id="backup" uri="file://target?append=false"/>
    </camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java code as:

public class ReportIncidentService {

    private ProducerTemplate template;

    public void setTemplate(ProducerTemplate template) {
        this.template = template;
    }

And then let Spring handle the dependency inject as below:

    <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService">
        <!-- set the producer template to use from the camel context below -->
        <property name="template" ref="camelTemplate"/>
    </bean>

Now we are ready to use the producer template in our service to send the payload to the endpoint. The template has many sendXXX methods for this purpose. But before we send the payload to the file endpoint we must also specify what filename to store the file as. This is done by sending meta data with the payload. In Camel metadata is sent as headers. Headers is just a plain Map<String, Object>. So if we needed to send several metadata then we could construct an ordinary HashMap and put the values in there. But as we just need to send one header with the filename Camel has a convenient send method sendBodyAndHeader so we choose this one.

    public OutputReportIncident reportIncident(InputReportIncident parameters) {
        System.out.println("Hello ReportIncidentService is called from " + parameters.getGivenName());

        String data = parameters.getDetails();

        // store the data as a file
        String filename = parameters.getIncidentId() + ".txt";
        // send the data to the endpoint and the header contains what filename it should be stored as
        template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name", filename);

        OutputReportIncident out = new OutputReportIncident();
        out.setCode("OK");
        return out;
    }

The template in the code above uses 4 parameters:

  • the endpoint name, in this case the id referring to the endpoint defined in Spring XML in the camelContext element.
  • the payload, can be any kind of object
  • the key for the header, in this case a Camel keyword to set the filename
  • and the value for the header

Running the example

We start our integration with maven using mvn jetty:run. Then we open a browser and hit http://localhost:8080. Jetty is so smart that it display a frontpage with links to the deployed application so just hit the link and you get our application. Now we hit append /services to the URL to access the Axis frontpage. The URL should be http://localhost:8080/camel-example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO:  Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing

We would like to be able to unit test our ReportIncidentService class. So we add junit to the maven dependency:

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.2</version>
            <scope>test</scope>
        </dependency>

And then we create a plain junit testcase for our service class.

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
 * Unit test of service
 */
public class ReportIncidentServiceTest extends TestCase {

    public void testIncident() {
        ReportIncidentService service = new ReportIncidentService();

        InputReportIncident input = createDummyIncident();
        OutputReportIncident output = service.reportIncident(input);
        assertEquals("OK", output.getCode());
    }

   protected InputReportIncident createDummyIncident() {
        InputReportIncident input = new InputReportIncident();
        input.setEmail("davsclaus@apache.org");
        input.setIncidentId("12345678");
        input.setIncidentDate("2008-07-13");
        input.setPhone("+45 2962 7576");
        input.setSummary("Failed operation");
        input.setDetails("The wrong foot was operated.");
        input.setFamilyName("Ibsen");
        input.setGivenName("Claus");
        return input;
    }

}

Then we can run the test with maven using: mvn test. But we will get a failure:

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:
  testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message to the file endpoint so the message will be stored in a file. What we need is to get hold of such a producer and inject it on our service, by calling the setter.

Since Camel is very light weight and embedable we are able to create a CamelContext and add the endpoint in our unit test code directly. We do this to show how this is possible:

    private CamelContext context;

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        // CamelContext is just created like this
        context = new DefaultCamelContext();

        // then we can create our endpoint and set the options
        FileEndpoint endpoint = new FileEndpoint();
        // the endpoint must have the camel context set also
        endpoint.setCamelContext(context);
        // our output folder
        endpoint.setFile(new File("target"));
        // and the option not to append
        endpoint.setAppend(false);

        // then we add the endpoint just in java code just as the spring XML, we register it with the "backup" id.
        context.addSingletonEndpoint("backup", endpoint);

        // finally we need to start the context so Camel is ready to rock
        context.start();
    }

    @Override
    protected void tearDown() throws Exception {
        super.tearDown();
        // and we are nice boys so we stop it to allow resources to clean up
        context.stop();
    }

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that baby from the CamelContext as:

    public void testIncident() {
        ReportIncidentService service = new ReportIncidentService();

        // get a producer template from the camel context
        ProducerTemplate template = context.createProducerTemplate();
        // inject it on our service using the setter
        service.setTemplate(template);

        InputReportIncident input = createDummyIncident();
        OutputReportIncident output = service.reportIncident(input);
        assertEquals("OK", output.getCode());
    }

And this time when we run the unit test its a success:

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

        // should generate a file also
        File file = new File("target/" + input.getIncidentId() + ".txt");
        assertTrue("File should exists", file.exists());

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we would like our unit test to use our spring configuration file axis-example-context.xml where we already have setup the endpoint. And of course we would like to test using this configuration file as this is the real file we will use. Well hey presto the xml file is a spring ApplicationContext file and spring is able to load it, so we go the spring path for unit testing. First we add the spring-test jar to our maven dependency:

        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-test</artifactId>
            <scope>test</scope>
        </dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to extend AbstractJUnit38SpringContextTests instead of TestCase in our unit test. Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml configuration file is located:

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is located in src/main/resources. If we omit the prefix then Spring will by default try to locate the xml file in the current package and that is org.apache.camel.example.axis. If the xml file is located outside the classpath you can use file: prefix instead. So with these two modifications we can get rid of all the setup and teardown code we had before and now we will test our real configuration.

The last change is to get hold of the producer template and now we can just refer to the bean id it has in the spring xml file:

        <!-- producer template exposed with this id -->
        <camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is used to do:

        // get a producer template from the the spring context
        ProducerTemplate template = (ProducerTemplate) applicationContext.getBean("camelTemplate");
        // inject it on our service using the setter
        service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring and you can use standard Spring'ish unit test to test your Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the AxisReportIncidentService how do we unit test this one? Well first of all the code is merely just a delegate to our real service that we have just tested, but nevertheless its a good question and we would like to know how. Well the answer is that we can exploit that fact that Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add this to our pom.xml:

        <dependency>
            <groupId>org.mortbay.jetty</groupId>
            <artifactId>jetty</artifactId>
            <version>${jetty-version}</version>
            <scope>test</scope>
        </dependency>

Then we can create a new class AxisReportIncidentServiceTest to unit test with Jetty. The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {

    private Server server;

    private void startJetty() throws Exception {
        // create an embedded Jetty server
        server = new Server();

        // add a listener on port 8080 on localhost (127.0.0.1)
        Connector connector = new SelectChannelConnector();
        connector.setPort(8080);
        connector.setHost("127.0.0.1");
        server.addConnector(connector);

        // add our web context path
        WebAppContext wac = new WebAppContext();
        wac.setContextPath("/unittest");
        // set the location of the exploded webapp where WEB-INF is located
        // this is a nice feature of Jetty where we can point to src/main/webapp
        wac.setWar("./src/main/webapp");
        server.setHandler(wac);

        // then start Jetty
        server.setStopAtShutdown(true);
        server.start();
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();
        startJetty();
    }

    @Override
    protected void tearDown() throws Exception {
        super.tearDown();
        server.stop();
    }

}

Now we just need to send the incident as a webservice request using Axis. So we add the following code:

    public void testReportIncidentWithAxis() throws Exception {
        // the url to the axis webservice exposed by jetty
        URL url = new URL("http://localhost:8080/unittest/services/ReportIncidentPort");

        // Axis stuff to get the port where we can send the webservice request
        ReportIncidentService_ServiceLocator locator = new ReportIncidentService_ServiceLocator();
        ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

        // create input to send
        InputReportIncident input = createDummyIncident();
        // send the webservice and get the response
        OutputReportIncident output = port.reportIncident(input);
        assertEquals("OK", output.getCode());

        // should generate a file also
        File file = new File("target/" + input.getIncidentId() + ".txt");
        assertTrue("File should exists", file.exists());
    }

    protected InputReportIncident createDummyIncident() {
        InputReportIncident input = new InputReportIncident();
        input.setEmail("davsclaus@apache.org");
        input.setIncidentId("12345678");
        input.setIncidentDate("2008-07-13");
        input.setPhone("+45 2962 7576");
        input.setSummary("Failed operation");
        input.setDetails("The wrong foot was operated.");
        input.setFamilyName("Ibsen");
        input.setGivenName("Claus");
        return input;
    }

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings more elegantly. Camel has the endpoint annotation @EndpointInjected that is just what we need. With this annotation we can inject the endpoint into our service. The annotation takes either a name or uri parameter. The name is the bean id in the Registry. The uri is the URI configuration for the endpoint. Using this you can actually inject an endpoint that you have not defined in the camel context. As we have defined our endpoint with the id backup we use the name parameter.

    @EndpointInject(name = "backup")
    private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object types. We like the ProducerTemplate so we just keep it as it is.
Since we use annotations on the field directly we do not need to set the property in the spring xml file so we change our service bean:

    <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.

And since we use the @EndpointInjected that refers to the endpoint with the id backup directly we can loose the template tag in the xml, so its shorter:

    <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

    <camel:camelContext id="camelContext">
        <!-- producer template exposed with this id -->
        <camel:template id="camelTemplate"/>

        <!-- endpoint named backup that is configued as a file component -->
        <camel:endpoint id="backup" uri="file://target?append=false"/>

    </camel:camelContext>

And the final touch we can do is that since the endpoint is injected with concrete endpoint to use we can remove the "backup" name parameter when we send the message. So we change from:

        // send the data to the endpoint and the header contains what filename it should be stored as
        template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name", filename);

To without the name:

        // send the data to the endpoint and the header contains what filename it should be stored as
        template.sendBodyAndHeader(data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing and mediation framework. But we wanted to demonstrate its flexibility and that it integrates well with even older frameworks such as Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.

Note that the code shown here also applies to Camel 1.4 so actually you can get started right away with the released version of Camel. As this time of writing Camel 1.5 is work in progress.

See Also

Tutorial on using Camel in a Web Application

Camel has been designed to work great with the Spring framework; so if you are already a Spring user you can think of Camel as just a framework for adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to add the standard Spring hook to load a /WEB-INF/applicationContext.xml file. In that file you can include your usual Camel XML configuration.

Step1: Edit your web.xml

To enable spring add a context loader listener to your /WEB-INF/web.xml file

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
         version="2.5">

  <listener>
    <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
  </listener>

</web-app>

This will cause Spring to boot up and look for the /WEB-INF/applicationContext.xml file.

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context"
       xsi:schemaLocation="
       http://www.springframework.org/schema/beans 
       http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
       http://www.springframework.org/schema/context 
       http://www.springframework.org/schema/context/spring-context-2.5.xsd
       http://camel.apache.org/schema/spring 
       http://camel.apache.org/schema/spring/camel-spring.xsd">

  <camelContext xmlns="http://camel.apache.org/schema/spring">
    <route>
      <from uri="seda:foo"/>
      <to uri="mock:results"/>
    </route>
  </camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you use Maven to build your application your directory tree will look like this...

src/main/webapp/WEB-INF
  web.xml
  applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming like this...

<project>
    ...
    <packaging>war</packaging>
    ...
    <build>
	<finalName>[desired WAR file name]</finalName>
        ...
    </build>

To enable more rapid development we highly recommend the jetty:run maven plugin.

Please refer to the help for more information on using jetty:run - but briefly if you add the following to your pom.xml

  <build>
    <plugins>
      <plugin>
        <groupId>org.mortbay.jetty</groupId>
        <artifactId>maven-jetty-plugin</artifactId>
        <configuration>
          <webAppConfig>
            <contextPath>/</contextPath>
          </webAppConfig>
          <scanIntervalSeconds>10</scanIntervalSeconds>
        </configuration>
      </plugin>
    </plugins>
  </build>

Then you can run your web application as follows

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory so that if you modify your spring XML, your web.xml or your java code the web application will be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web application via

mvn -Dtest=false jetty:run

Tutorial Business Partners

Under Construction

This tutorial is a work in progress.

Background and Introduction

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their customers are responsible for telling Acme what they purchased. The customer enters into their own systems (ERP or whatever) which widgets they bought from Acme. Then at some point, their systems emit a record of the sale which needs to go to Acme so Acme can bill them for it. Obviously, everyone wants this to be as automated as possible, so there needs to be integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects, "you can send us the data in whatever format, using whatever protocols, whatever. You just can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:

  • Customer 1: XML over FTP
  • Customer 2: CSV over HTTP
  • Customer 3: Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format and submitted to the Acme accounting system via JMS. Then the Acme accounting system does its stuff and sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted, line item #2 in error, total invoice $123.45). Finally, that data needs to be formatted into an e-mail, and sent to a contact at the customer in question ("Dear Joyce, we received an invoice on 1/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items #2 [invalid quantity ordered]. Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:

  • Listen for HTTP, e-mail, and FTP files
  • Grab attachments from the e-mail messages
  • Convert XML, XLS, and CSV files to a canonical XML format
  • read and write JMS messages
  • route based on company ID
  • format e-mails using Velocity templates
  • send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:

You'll learn:

  • How to set up a Maven build for a Camel project
  • How to transform XML, CSV, and Excel data into a standard XML format with Camel
    • How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT stylesheets that are invoked by Camel routes for message transformation
  • How to configure simple and complex Routes in Camel, using either the XML or the Java DSL format
  • How to set up unit tests that load a Camel configuration and test Camel routes
  • How to use Camel's Data Formats to automatically convert data between Java objects and XML, CSV files, etc.
  • How to send and receive e-mail from Camel
  • How to send and receive JMS messages from Camel
  • How to use Enterprise Integration Patterns including Message Router and Pipes and Filters
    • How to use various languages to express content-based routing rules in Camel
  • How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and configuration files yourself. Each of the sections gives detailed descriptions of the steps that need to be taken to get the components and routes working in Camel, and takes you through tests to make sure they are working as expected.

But each section also links to working copies of the source and configuration files, so if you don't want the hands-on approach, you can simply review and/or download the finished files.

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

And then, the output from Acme to the customers:

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and test those, and then try to assemble the big scenario and test that.

Here's what we'll try to accomplish:

  1. Create a Maven build for the project
  2. Get sample files for the customer Excel, CSV, and XML input
  3. Get a sample file for the canonical XML format that Acme's accounting system uses
  4. Create an XSD for the canonical XML format
  5. Create JAXB POJOs corresponding to the canonical XSD
  6. Create an XSLT stylesheet to convert the Customer 1 (XML over FTP) messages to the canonical format
  7. Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet works
  8. Create a POJO that converts a List<List<String>> to the above JAXB POJOs
    • Note that Camel can automatically convert CSV input to a List of Lists of Strings representing the rows and columns of the CSV, so we'll use this POJO to handle Customer 2 (CSV over HTTP)
  9. Create a unit test to ensure that a simple Camel route invoking the CSV processing works
  10. Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs (using POI to read Excel)
  11. Create a unit test to ensure that a simple Camel route invoking the Excel processing works
  12. Create a POJO that reads an input message, takes an attachment off the message, and replaces the body of the message with the attachment
    • This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains a single Excel file as an attachment, and the actual e-mail body is throwaway
  13. Build a set of Camel routes to handle the entire input (Customer -> Acme) side of the scenario.
  14. Build unit tests for the Camel input.
  15. TODO: Tasks for the output (Acme -> Customer) side of the scenario

Let's Get Started!

Step 1: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's nice to have Maven handle them for us. You should have a current version of Maven (e.g. 2.0.9) installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel-core, and set the compile version to 1.5 (so we can use annotations):

pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.apache.camel.tutorial</groupId>
    <artifactId>business-partners</artifactId>
    <version>1.0-SNAPSHOT</version>
    <name>Camel Business Partners Tutorial</name>
    <dependencies>
        <dependency>
            <artifactId>camel-core</artifactId>
            <groupId>org.apache.camel</groupId>
            <version>1.4.0</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.5</source>
                    <target>1.5</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf" ones. You can save yourself some time by downloading these to src/test/resources in your Maven project.

If you look at these files, you'll see that the different input formats use different field names and/or ordering, because of course the sales guys were totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">
  <partner-id>2</partner-id>
  <date-received>9/12/2008</date-received>
  <line-item>
    <product-id>134</product-id>
    <description>A widget</description>
    <quantity>3</quantity>
    <item-price>10.45</item-price>
    <order-date>6/5/2008</order-date>
  </line-item>
  <!-- // more line-item elements here -->
  <order-total>218.82</order-total>
</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/main/xsd.

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to set up those XML binding POJOs. So we'll update the Maven POM to generate JAXB beans from the XSD file.

We need a dependency:

<dependency>
    <artifactId>camel-jaxb</artifactId>
    <groupId>org.apache.camel</groupId>
    <version>1.4.0</version>
</dependency>

And a plugin configured:

<plugin>
    <groupId>org.codehaus.mojo</groupId>
    <artifactId>jaxb2-maven-plugin</artifactId>
    <executions>
        <execution>
            <goals>
                <goal>xjc</goal>
            </goals>
        </execution>
    </executions>
</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to generate beans for). Run mvn install and it should emit the beans into target/generated-sources/jaxb. Your IDE should see them there, though you may need to update the project to reflect the new settings in the Maven POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)

To get a start on Customer 1, we'll create an XSLT template to convert the Customer 1 sample file into the canonical XML format, write a small Camel route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and can be run safely in Camel.

Create an XSLT template

Start with the Customer 1 sample input. You want to create an XSLT template to generate XML like the canonical XML sample above – an invoice element with line-item elements (one per item in the original XML document). If you're especially clever, you can populate the current date and order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going if you don't want to write one of your own.

Create a unit test

Here's where we get to some meaty Camel work. We need to:

  • Set up a unit test
  • That loads a Camel configuration
  • That has a route invoking our XSLT
  • Where the test sends a message to the route
  • And ensures that some XML comes out the end of the route

The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then use a base unit test class from Spring that knows how to load a Spring context to run tests against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test
  1. Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically bring in JUnit 3.8.x) to your POM:
    <dependency>
        <artifactId>camel-spring</artifactId>
        <groupId>org.apache.camel</groupId>
        <version>1.4.0</version>
    </dependency>
    <dependency>
        <artifactId>spring-test</artifactId>
        <groupId>org.springframework</groupId>
        <version>2.5.5</version>
        <scope>test</scope>
    </dependency>
    
  2. Create a new unit test class in src/test/java/your-package-here, perhaps called XMLInputTest.java
  3. Make the test extend Spring's AbstractJUnit38SpringContextTests class, so it can load a Spring context for the test
  4. Create a Spring context configuration file in src/test/resources, perhaps called XMLInputTest-context.xml
  5. In the unit test class, use the class-level @ContextConfiguration annotation to indicate that a Spring context should be loaded
    • By default, this looks for a Context configuration file called TestClassName-context.xml in a subdirectory corresponding to the package of the test class. For instance, if your test class was org.apache.camel.tutorial.XMLInputTest, it would look for org/apache/camel/tutorial/XMLInputTest-context.xml
    • To override this default, use the locations attribute on the @ContextConfiguration annotation to provide specific context file locations (starting each path with a / if you don't want it to be relative to the package directory). My solution does this so I can put the context file directly in src/test/resources instead of in a package directory under there.
  6. Add a CamelContext instance variable to the test class, with the @Autowired annotation. That way Spring will automatically pull the CamelContext out of the Spring context and inject it into our test class.
  7. Add a ProducerTemplate instance variable and a setUp method that instantiates it from the CamelContext. We'll use the ProducerTemplate later to send messages to the route.
    protected ProducerTemplate<Exchange> template;
    
    protected void setUp() throws Exception {
        super.setUp();
        template = camelContext.createProducerTemplate();
    }
    
  8. Put in an empty test method just for the moment (so when we run this we can see that "1 test succeeded")
  9. Add the Spring <beans> element (including the Camel Namespace) with an empty <camelContext> element to the Spring context, like this:
    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://www.springframework.org/schema/beans
                                   http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
                               http://activemq.apache.org/camel/schema/spring
                                   http://activemq.apache.org/camel/schema/spring/camel-spring-1.4.0.xsd">
    
        <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
        </camelContext>
    </beans>
    

Test it by running mvn install and make sure there are no build errors. So far it doesn't test much; just that your project and test and source files are all organized correctly, and the one empty test method completes successfully.

Solution: Your test class might look something like this:

  • src/test/java/org/apache/camel/tutorial/XMLInputTest.java
  • src/test/resources/XMLInputTest-context.xml (same as just above)
Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer 1 input file, and makes sure that some XML output comes out:

  1. Save the input-customer1.xml file to src/test/resources
  2. Save your XSLT file (created in the previous step) to src/main/resources
  3. Write a Camel Route, either right in the Spring XML, or using the Java DSL (in another class under src/test/java somewhere). This route should use the Pipes and Filters integration pattern to:
    1. Start from the endpoint direct:start (which lets the test conveniently pass messages into the route)
    2. Call the endpoint xslt:YourXSLTFile.xsl (to transform the message with the specified XSLT template)
    3. Send the result to the endpoint mock:finish (which lets the test verify the route output)
  4. Add a test method to the unit test class that:
    1. Get a reference to the Mock endpoint mock:finish using code like this:
      MockEndpoint finish = MockEndpoint.resolve(camelContext, "mock:finish");
      
    2. Set the expectedMessageCount on that endpoint to 1
    3. Get a reference to the Customer 1 input file, using code like this:
      InputStream in = XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
      assertNotNull(in);
      
    4. Send that InputStream as a message to the direct:start endpoint, using code like this:
          template.sendBody("direct:start", in);
      
      Note that we can send the sample file body in several formats (File, InputStream, String, etc.) but in this case an InputStream is pretty convenient.
    5. Ensure that the message made it through the route to the final endpoint, by testing all configured Mock endpoints like this:
      MockEndpoint.assertIsSatisfied(camelContext);
      
    6. If you like, inspect the final message body using some code like finish.getExchanges().get(0).getIn().getBody().
      • If you do this, you'll need to know what format that body is – String, byte array, InputStream, etc.
  5. Run your test with mvn install and make sure the build completes successfully.

Solution: Your finished test might look something like this:

Test Base Class

Once your test class is working, you might want to extract things like the @Autowired CamelContext, the ProducerTemplate, and the setUp method to a custom base class that you extend with your other tests.

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data into the JAXB POJOs representing the canonical XML format, write a small Camel route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV conversion and JAXB handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with, CSV is a known data format in Camel. Camel can convert a CSV file to a List (representing rows in the CSV) of Lists (representing cells in the row) of Strings (the data for each cell). That means our POJO can just assume the data coming in is of type List<List<String>>, and we can declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/jaxb, it looks like an Invoice object represents the whole document, with a nested list of LineItemType objects for the line items. Therefore our POJO method will return an Invoice (a document in the canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:

  1. Create a new class under src/main/java, perhaps called CSVConverterBean.
  2. Add a method, with one argument of type List<List<String>> and the return type Invoice
    • You may annotate the argument with @Body to specifically designate it as the body of the incoming message
  3. In the method, the logic should look roughly like this:
    1. Create a new Invoice, using the method on the generated ObjectFactory class
    2. Loop through all the rows in the incoming CSV (the outer List)
    3. Skip the first row, which contains headers (column names)
    4. For the other rows:
      1. Create a new LineItemType (using the ObjectFactory again)
      2. Pick out all the cell values (the Strings in the inner List) and put them into the correct fields of the LineItemType
        • Not all of the values will actually go into the line item in this example
        • You may hardcode the column ordering based on the sample data file, or else try to read it dynamically from the headers in the first line
        • Note that you'll need to use a JAXB DatatypeFactory to create the XMLGregorianCalendar values that JAXB uses for the date fields in the XML – which probably means using a SimpleDateFormat to parse the date and setting that date on a GregorianCalendar
      3. Add the line item to the invoice
    5. Populate the partner ID, date of receipt, and order total on the Invoice
    6. Throw any exceptions out of the method, so Camel knows something went wrong
    7. Return the finished Invoice

Solution: Here's an example of what the CSVConverterBean might look like.

Create a unit test

Start with a simple test class and test Spring context like last time, perhaps based on the name CSVInputTest:

CSVInputTest.java
/**
 * A test class the ensure we can convert Partner 2 CSV input files to the
 * canonical XML output format, using JAXB POJOs.
 */
@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {
    @Autowired
    protected CamelContext camelContext;
    protected ProducerTemplate<Exchange> template;

    protected void setUp() throws Exception {
        super.setUp();
        template = camelContext.createProducerTemplate();
    }

    public void testCSVConversion() {
        // TODO
    }
}
CSVInputTest-context.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
                               http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
                           http://activemq.apache.org/camel/schema/spring
                               http://activemq.apache.org/camel/schema/spring/camel-spring-1.4.0.xsd">

    <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
        <!-- TODO -->
    </camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.

  1. Update the Maven POM to include CSV Data Format support:
    <dependency>
        <artifactId>camel-csv</artifactId>
        <groupId>org.apache.camel</groupId>
        <version>1.4.0</version>
    </dependency>
    
  2. Write the routes (right in the Spring XML context, or using the Java DSL) for the CSV conversion process, again using the Pipes and Filters pattern:
    1. Start from the endpoint direct:CSVstart (which lets the test conveniently pass messages into the route). We'll name this differently than the starting point for the previous test, in case you use the Java DSL and put all your routes in the same package (which would mean that each test would load the DSL routes for several tests.)
    2. This time, there's a little preparation to be done. Camel doesn't know that the initial input is a CSV, so it won't be able to convert it to the expected List<List<String>> without a little hint. For that, we need an unmarshal transformation in the route. The unmarshal method (in the DSL) or element (in the XML) takes a child indicating the format to unmarshal; in this case that should be csv.
    3. Next invoke the POJO to transform the message with a bean:CSVConverter endpoint
    4. As before, send the result to the endpoint mock:finish (which lets the test verify the route output)
    5. Finally, we need a Spring <bean> element in the Spring context XML file (but outside the <camelContext> element) to define the Spring bean that our route invokes. This Spring bean should have a name attribute that matches the name used in the bean endpoint (CSVConverter in the example above), and a class attribute that points to the CSV-to-JAXB POJO class you wrote above (such as, org.apache.camel.tutorial.CSVConverterBean). When Spring is in the picture, any bean endpoints look up Spring beans with the specified name.
  3. Write a test method in the test class, which should look very similar to the previous test class:
    1. Get the MockEndpoint for the final endpoint, and tell it to expect one message
    2. Load the Partner 2 sample CSV file from the ClassPath, and send it as the body of a message to the starting endpoint
    3. Verify that the final MockEndpoint is satisfied (that is, it received one message) and examine the message body if you like
      • Note that we didn't marshal the JAXB POJOs to XML in this test, so the final message should contain an Invoice as the body. You could write a simple line of code to get the Exchange (and Message) from the MockEndpoint to confirm that.
  4. Run this new test with mvn install and make sure it passes and the build completes successfully.

Solution: Your finished test might look something like this:

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel data into the JAXB POJOs representing the canonical XML format, write a small Camel route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the Excel conversion and JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options – create an Excel DataFormat (so Camel can convert Excel spreadsheets to something like the CSV List<List<String>> automatically), or create a POJO that can translate Excel data manually. For now, the second approach is easier (if we go the DataFormat route, we need code to both read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like an InputStream or byte[] as an argument, and returns in Invoice as before. The process should look something like this:

  1. Update the Maven POM to include POI support:
    <dependency>
        <artifactId>poi</artifactId>
        <groupId>org.apache.poi</groupId>
        <version>3.1-FINAL</version>
    </dependency>
    
  2. Create a new class under src/main/java, perhaps called ExcelConverterBean.
  3. Add a method, with one argument of type InputStream and the return type Invoice
    • You may annotate the argument with @Body to specifically designate it as the body of the incoming message
  4. In the method, the logic should look roughly like this:
    1. Create a new Invoice, using the method on the generated ObjectFactory class
    2. Create a new HSSFWorkbook from the InputStream, and get the first sheet from it
    3. Loop through all the rows in the sheet
    4. Skip the first row, which contains headers (column names)
    5. For the other rows:
      1. Create a new LineItemType (using the ObjectFactory again)
      2. Pick out all the cell values and put them into the correct fields of the LineItemType (you'll need some data type conversion logic)
        • Not all of the values will actually go into the line item in this example
        • You may hardcode the column ordering based on the sample data file, or else try to read it dynamically from the headers in the first line
        • Note that you'll need to use a JAXB DatatypeFactory to create the XMLGregorianCalendar values that JAXB uses for the date fields in the XML – which probably means setting the date from a date cell on a GregorianCalendar
      3. Add the line item to the invoice
    6. Populate the partner ID, date of receipt, and order total on the Invoice
    7. Throw any exceptions out of the method, so Camel knows something went wrong
    8. Return the finished Invoice

Solution: Here's an example of what the ExcelConverterBean might look like.

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean should be quite similar to the CSV bean.

  1. Create the basic test class and corresponding Spring Context XML configuration file
  2. The XML config should look a lot like the CSV test, except:
    • Remember to use a different start endpoint name if you're using the Java DSL and not use separate packages per test
    • You don't need the unmarshal step since the Excel POJO takes the raw InputStream from the source endpoint
    • You'll declare a <bean> and endpoint for the Excel bean prepared above instead of the CSV bean
  3. The test class should look a lot like the CSV test, except use the right input file name and start endpoint name.

Logging

You may notice that your tests emit a lot less output all of a sudden. The dependency on POI brought in Log4J and configured commons-logging to use it, so now we need a log4j.properties file to configure log output. You can use the attached one (snarfed from ActiveMQ) or write your own; either way save it to src/main/resources to ensure you continue to see log output.

Solution: Your finished test might look something like this:

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen for HTTP, FTP, or e-mail input, and write the final XML output to an ActiveMQ queue. Along the way these routes will use the data conversions we've developed above.

So we'll create 3 routes to start with, as shown in the diagram back at the beginning:

  1. Accept XML orders over FTP from Customer 1 (we'll assume the FTP server dumps files in a local directory on the Camel machine)
  2. Accept CSV orders over HTTP from Customer 2
  3. Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent to an account we can access via IMAP)

...

Step 8: Create a unit test for the Customer Input Routes

Languages Supported Appendix

To support flexible and powerful Enterprise Integration Patterns Camel supports various Languages to create an Expression or Predicate within either the Routing Domain Specific Language or the Xml Configuration. The following languages are supported

Bean Language

The purpose of the Bean Language is to be able to implement an Expression or Predicate using a simple method on a bean. The bean name is resolved using a Registry, such as the Spring ApplicationContext, then a method is invoked to evaluate the Expression or Predicate. If no method name is provided then one is chosen using the rules for Bean Binding; using the type of the message body and using any annotations on the bean methods.

The Bean Binding rules are used to bind the Message Exchange to the method parameters; so you can annotate the bean to extract headers or other expressions such as XPath or XQuery from the message.

Using Bean Expressions in Java

from("activemq:topic:OrdersTopic")
  .filter().method("myBean", "isGoldCustomer")
    .to("activemq:BigSpendersQueue");

Using Bean Expressions in Spring XML

<route>
  <from uri="activemq:topic:OrdersTopic"/>
  <filter>
    <method ref="myBean" method="isGoldCustomer"/>
    <to uri="activemq:BigSpendersQueue"/>
  </filter>
</route>

Bean Attribute Now Deprecated

The bean attribute of the method expression element is now deprecated. Use the ref attribute instead.

Writing the Expression Bean

The bean in the above examples is just any old Java Bean with a method called isGoldCustomer() that returns some object that is easily converted to a boolean value in this case, as its used as a predicate.

Example:

public class MyBean {
  public boolean isGoldCustomer(Exchange exchange) {
  	 // ...
  }
}

We can also use the Bean Integration annotations.

Example:

public boolean isGoldCustomer(String body) {...}

or

public boolean isGoldCustomer(@Header(name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, the Message or individual headers, properties, the body or other expressions.

Non-Registry Beans

The Bean Language also supports invoking beans that isn't registered in the Registry. This is usable for quickly to invoke a bean from Java DSL where you don't need to register the bean in the Registry such as the Spring ApplicationContext. Camel can instantiate the bean and invoke the method if given a class or invoke an already existing instance.

Example:

from("activemq:topic:OrdersTopic")
  .filter().expression(BeanLanguage(MyBean.class, "isGoldCustomer"))
  .to("activemq:BigSpendersQueue");

The 2nd parameter isGoldCustomer is an optional parameter to explicit set the method name to invoke. If not provided Camel will try to invoke the most suitable method. If case of ambiguity Camel will thrown an Exception. In these situations the 2nd parameter can solve this problem. Also the code is more readable if the method name is provided. The 1st parameter can also be an existing instance of a Bean such as:

private MyBean my;

from("activemq:topic:OrdersTopic")
  .filter().expression(BeanLanguage.bean(my, "isGoldCustomer"))
  .to("activemq:BigSpendersQueue");

In Camel 2.2: you can avoid the BeanLanguage and have it just as:

private MyBean my;

from("activemq:topic:OrdersTopic")
  .filter().expression(bean(my, "isGoldCustomer"))
  .to("activemq:BigSpendersQueue");

Which also can be done in a bit shorter and nice way:

private MyBean my;

from("activemq:topic:OrdersTopic")
  .filter().method(my, "isGoldCustomer")
  .to("activemq:BigSpendersQueue");

Other Examples

We have some test cases you can look at if it'll help

  • MethodFilterTest is a JUnit test case showing the Java DSL use of the bean expression being used in a filter
  • aggregator.xml is a Spring XML test case for the Aggregator which uses a bean method call to test for the completion of the aggregation.

Dependencies

The Bean language is part of camel-core.

Constant Expression Language

The Constant Expression Language is really just a way to specify constant strings as a type of expression.

Example usage

The setHeader element of the Spring DSL can utilize a constant expression like:

<route>
  <from uri="seda:a"/>
  <setHeader headerName="theHeader">
    <constant>the value</constant>        
  </setHeader>
  <to uri="mock:b"/>     
</route>

In this case, the Message coming from the seda:a Endpoint will have theHeader header set to the constant value the value.

And the same example using Java DSL:

from("seda:a")
  .setHeader("theHeader", constant("the value"))
  .to("mock:b");

Dependencies

The Constant language is part of camel-core.

EL

Camel supports the unified JSP and JSF Expression Language via the JUEL to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

For example you could use EL inside a Message Filter in XML

<route>
  <from uri="seda:foo"/>
  <filter>
    <el>${in.headers.foo == 'bar'}</el>
    <to uri="seda:bar"/>
  </filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a valid identifier:

<route>
  <from uri="seda:foo"/>
  <filter>
    <el>${in.headers['My Header'] == 'bar'}</el>
    <to uri="seda:bar"/>
  </filter>
</route>

You could use EL to create an Predicate in a Message Filter or as an Expression for a Recipient List

Variables

Variable

Type

Description

exchange

Exchange

the Exchange object

in

Message

the exchange.in message

out

Message

the exchange.out message

Samples

You can use EL dot notation to invoke operations. If you for instance have a body that contains a POJO that has a getFamiliyName method then you can construct the syntax as follows:

"${in.body.familyName}"

Dependencies

To use EL in your camel routes you need to add the a dependency on camel-juel which implements the EL language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
  <groupId>org.apache.camel</groupId>
  <artifactId>camel-juel</artifactId>
  <version>x.x.x</version>
</dependency>

Otherwise you'll also need to include JUEL.

Header Expression Language

The Header Expression Language allows you to extract values of named headers.

Example usage

The recipientList element of the Spring DSL can utilize a header expression like:

{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/recipientListWithStringDelimitedHeader.xml}

In this case, the list of recipients are contained in the header 'myHeader'.

And the same example in Java DSL:

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListWithStringDelimitedHeaderTest.java}

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using parameters but using stacked operations, notice that header is not a parameter but a stacked method call)

java from("direct:a").recipientList().header("myHeader");

Dependencies

The Header language is part of camel-core.

JXPath

Camel supports JXPath to allow XPath expressions to be used on beans in an Expression or Predicate to be used in the DSL or Xml Configuration. For example you could use JXPath to create an Predicate in a Message Filter or as an Expression for a Recipient List.

You can use XPath expressions directly using smart completion in your IDE as follows

from("queue:foo").filter(). jxpath("/in/body/foo"). to("queue:bar")

Variables

Variable

Type

Description

this

Exchange

the Exchange object

in

Message

the exchange.in message

out

Message

the exchange.out message

Options

Option

Type

Description

lenient

boolean

Camel 2.11/2.10.5: Allows to turn lenient on the JXPathContext. When turned on this allows the JXPath expression to evaluate against expressions and message bodies which may be invalid / missing data. See more details at the JXPath Documentation This option is by default false.

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use JXPath expressions as follows

xml <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd"> <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"> <route> <from uri="activemq:MyQueue"/> <filter> <jxpath>in/body/name = 'James'</xpath> <to uri="mqseries:SomeOtherQueue"/> </filter> </route> </camelContext> </beans>

Examples

Here is a simple example using a JXPath expression as a predicate in a Message Filter

{snippet:id=example|lang=java|url=camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java}

JXPath injection

You can use Bean Integration to invoke a method on a bean and use various languages such as JXPath to extract a value from the message and bind it to a method parameter.

For example

public class Foo { @MessageDriven(uri = "activemq:my.queue") public void doSomething(@JXPath("in/body/foo") String correlationID, @Body String body) { // process the inbound message here } }

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:

.setHeader("myHeader").jxpath("resource:classpath:myjxpath.txt")

Dependencies

To use JXpath in your camel routes you need to add the a dependency on camel-jxpath which implements the JXpath language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-jxpath</artifactId> <version>x.x.x</version> </dependency>

Otherwise, you'll also need Commons JXPath.

Mvel

Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use Mvel to create an Predicate in a Message Filter or as an Expression for a Recipient List

You can use Mvel dot notation to invoke operations. If you for instance have a body that contains a POJO that has a getFamiliyName method then you can construct the syntax as follows:

"request.body.familyName"
   // or 
"getRequest().getBody().getFamilyName()"

Variables

Variable

Type

Description

this

Exchange

the Exchange is the root object

exchange

Exchange

the Exchange object

exception

Throwable

the Exchange exception (if any)

exchangeId

String

the exchange id

fault

Message

the Fault message (if any)

request

Message

the exchange.in message

response

Message

the exchange.out message (if any)

properties

Map

the exchange properties

property(name)

Object

the property by the given name

property(name, type)

Type

the property by the given name as the given type

Samples

For example you could use Mvel inside a Message Filter in XML

<route>
  <from uri="seda:foo"/>
  <filter>
    <mvel>request.headers.foo == 'bar'</mvel>
    <to uri="seda:bar"/>
  </filter>
</route>

And the sample using Java DSL:

   from("seda:foo").filter().mvel("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:

.setHeader("myHeader").mvel("resource:classpath:script.mvel")

Dependencies

To use Mvel in your camel routes you need to add the a dependency on camel-mvel which implements the Mvel language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
  <groupId>org.apache.camel</groupId>
  <artifactId>camel-mvel</artifactId>
  <version>x.x.x</version>
</dependency>

OGNL

Camel allows OGNL to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use OGNL to create an Predicate in a Message Filter or as an Expression for a Recipient List

You can use OGNL dot notation to invoke operations. If you for instance have a body that contains a POJO that has a getFamilyName method then you can construct the syntax as follows:

"request.body.familyName"
   // or 
"getRequest().getBody().getFamilyName()"

Variables

Variable

Type

Description

this

Exchange

the Exchange is the root object

exchange

Exchange

the Exchange object

exception

Throwable

the Exchange exception (if any)

exchangeId

String

the exchange id

fault

Message

the Fault message (if any)

request

Message

the exchange.in message

response

Message

the exchange.out message (if any)

properties

Map

the exchange properties

property(name)

Object

the property by the given name

property(name, type)

Type

the property by the given name as the given type

Samples

For example you could use OGNL inside a Message Filter in XML

<route>
  <from uri="seda:foo"/>
  <filter>
    <ognl>request.headers.foo == 'bar'</ognl>
    <to uri="seda:bar"/>
  </filter>
</route>

And the sample using Java DSL:

   from("seda:foo").filter().ognl("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:

.setHeader("myHeader").ognl("resource:classpath:myognl.txt")

Dependencies

To use OGNL in your camel routes you need to add the a dependency on camel-ognl which implements the OGNL language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
  <groupId>org.apache.camel</groupId>
  <artifactId>camel-ognl</artifactId>
  <version>x.x.x</version>
</dependency>

Otherwise, you'll also need OGNL

Property Expression Language

The Property Expression Language allows you to extract values of named exchange properties.

From Camel 2.15 onwards the property language has been renamed to exchangeProperty to avoid ambiguity, confusion and clash with properties as a general term. So use exchangeProperty instead of property when using Camel 2.15 onwards.

 

Example usage

The recipientList element of the Spring DSL can utilize a property expression like:

{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/recipientListWithStringDelimitedProperty.xml}

In this case, the list of recipients are contained in the property 'myProperty'.

And the same example in Java DSL:

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListWithStringDelimitedPropertyTest.java}

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using parameters but using stacked operations, notice that property is not a parameter but a stacked method call)

java from("direct:a").recipientList().property("myProperty");

Dependencies

The Property language is part of camel-core.

Scripting Languages

Camel supports a number of scripting languages which can be used to create an Expression or Predicate via the standard JSR 223 which is a standard part of Java 6.

The following scripting languages are integrated into the DSL:

Language

DSL keyword

EL

el

Groovy

groovy

JavaScript

javaScript

JoSQL

sql

JXPath

jxpath

MVEL

mvel

OGNL

ognl

PHP

php

Python

python

Ruby

ruby

XPath

xpath

XQuery

xquery

However any JSR 223 scripting language can be used using the generic DSL methods.

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

See Also

BeanShell

Camel supports BeanShell among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a BeanShell expression use the following Java code:

...choice()
    .when(script("beanshell", "request.getHeaders().get(\"foo\").equals(\"bar\")"))
       .to("...")

Or the something like this in your Spring XML:

<filter>
  <language language="beanshell">request.getHeaders().get("Foo") == null</language>
  ...

BeanShell Issues

You must use BeanShell 2.0b5 or greater. Note that as of 2.0b5 BeanShell cannot compile scripts, which causes Camel releases before 2.6 to fail when configured with BeanShell expressions.

You could follow the examples above to create an Predicate in a Message Filter or as an Expression for a Recipient List

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

JavaScript

Camel supports JavaScript/ECMAScript among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a JavaScript expression use the following Java code

... javaScript("someJavaScriptExpression") ... 

For example you could use the javaScript function to create an Predicate in a Message Filter or as an Expression for a Recipient List

Example

In the sample below we use JavaScript to create a Predicate use in the route path, to route exchanges from admin users to a special queue.

    from("direct:start")
        .choice()
            .when().javaScript("request.headers.get('user') == 'admin'").to("seda:adminQueue")
        .otherwise()
            .to("seda:regularQueue");

And a Spring DSL sample as well:

    <route>
        <from uri="direct:start"/>
        <choice>
            <when>
                <javaScript>request.headers.get('user') == 'admin'</javaScript>
                <to uri="seda:adminQueue"/>
            </when>
            <otherwise>
                <to uri="seda:regularQueue"/>
            </otherwise>
        </choice>
    </route>

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

Groovy

Camel supports Groovy among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Groovy expression use the following Java code

... groovy("someGroovyExpression") ... 

For example you could use the groovy function to create an Predicate in a Message Filter or as an Expression for a Recipient List

Dependency

You should add the camel-groovy dependeny when using Groovy language with Camel. The generic camel-script is not optimized for best Groovy experience, and hence you should add camel-groovy as dependency.

Customizing Groovy Shell

Sometimes you may need to use custom GroovyShell instance in your Groovy expressions. To provide custom GroovyShell, add implementation of the org.apache.camel.language.groovy.GroovyShellFactory SPI interface to your Camel registry. For example after adding the following bean to your Spring context...

public class CustomGroovyShellFactory implements GroovyShellFactory {
 
  public GroovyShell createGroovyShell(Exchange exchange) {
    ImportCustomizer importCustomizer = new ImportCustomizer();
    importCustomizer.addStaticStars("com.example.Utils");
    CompilerConfiguration configuration = new CompilerConfiguration();
    configuration.addCompilationCustomizers(importCustomizer);
    return new GroovyShell(configuration);
  }

}

...Camel will use your custom GroovyShell instance (containing your custom static imports), instead of the default one.

Example

// lets route if a line item is over $100
from("queue:foo").filter(groovy("request.lineItems.any { i -> i.value > 100 }")).to("queue:bar")

And the Spring DSL:

        <route>
            <from uri="queue:foo"/>
            <filter>
                <groovy>request.lineItems.any { i -> i.value > 100 }</groovy>
                <to uri="queue:bar"/>
            </filter>
        </route>

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

Python

Camel supports Python among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Python expression use the following Java code

... python("somePythonExpression") ... 

For example you could use the python function to create an Predicate in a Message Filter or as an Expression for a Recipient List

Example

In the sample below we use Python to create a Predicate use in the route path, to route exchanges from admin users to a special queue.

    from("direct:start")
        .choice()
            .when().python("request.headers['user'] == 'admin'").to("seda:adminQueue")
        .otherwise()
            .to("seda:regularQueue");

And a Spring DSL sample as well:

    <route>
        <from uri="direct:start"/>
        <choice>
            <when>
                <python>request.headers['user'] == 'admin'</python>
                <to uri="seda:adminQueue"/>
            </when>
            <otherwise>
                <to uri="seda:regularQueue"/>
            </otherwise>
        </choice>
    </route>

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

PHP

Camel supports PHP among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a PHP expression use the following Java code

... php("somePHPExpression") ... 

For example you could use the php function to create an Predicate in a Message Filter or as an Expression for a Recipient List

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

Ruby

Camel supports Ruby among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Ruby expression use the following Java code

... ruby("someRubyExpression") ... 

For example you could use the ruby function to create an Predicate in a Message Filter or as an Expression for a Recipient List

Example

In the sample below we use Ruby to create a Predicate use in the route path, to route exchanges from admin users to a special queue.

    from("direct:start")
        .choice()
            .when().ruby("$request.headers['user'] == 'admin'").to("seda:adminQueue")
        .otherwise()
            .to("seda:regularQueue");

And a Spring DSL sample as well:

    <route>
        <from uri="direct:start"/>
        <choice>
            <when>
                <ruby>$request.headers['user'] == 'admin'</ruby>
                <to uri="seda:adminQueue"/>
            </when>
            <otherwise>
                <to uri="seda:regularQueue"/>
            </otherwise>
        </choice>
    </route>

ScriptContext Options

 

The JSR-223 scripting language's ScriptContext is pre-configured with the following attributes all set at ENGINE_SCOPE.

Attribute

Type

Value

camelContext

org.apache.camel.CamelContext

The Camel Context.

context

org.apache.camel.CamelContext

The Camel Context (cannot be used in groovy).

exchange

org.apache.camel.Exchange

The current Exchange.

properties

org.apache.camel.builder.script.PropertiesFunction

Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.

request

org.apache.camel.Message

The IN message.

response

org.apache.camel.Message

Deprecated: The OUT message. The OUT message is null by default. Use the IN message instead.

See Scripting Languages for the list of languages with explicit DSL support.

Passing Additional Arguments to the ScriptingEngine

Available from Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.

Example:

public void testArgumentsExample() throws Exception {
    getMockEndpoint("mock:result").expectedMessageCount(0);
    getMockEndpoint("mock:unmatched").expectedMessageCount(1);

    // additional arguments to ScriptEngine
    Map<String, Object> arguments = new HashMap<>();
    arguments.put("foo", "bar");
    arguments.put("baz", 7);

    // those additional arguments is provided as a header on the Camel Message
    template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS, arguments);

    assertMockEndpointsSatisfied();


 


Using Properties Function

Available from Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example, to set a header name myHeader with a value from a property placeholder, whose key is taken from a header named foo.

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' + request.headers.get('foo') + '}}')")

From Camel 2.9: you can now use the properties function and the same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")


Loading Script From External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location e.g. to refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")


How to Get the Result from Multiple Statements Script

Available from Camel 2.14

The script engine's eval method returns a null when it runs a multi-statement script. However, Camel can look up the value of a script's result by using the key result from the value set. When writing a multi-statement script set the value of the result variable as the script return value.

textbar = "baz"; # some other statements ... # camel take the result value as the script evaluation result result = body * 2 + 1

 

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-script</artifactId>
 <version>x.x.x</version>
</dependency>

Simple Expression Language

The Simple Expression Language was a really simple language when it was created, but has since grown more powerful. It is primarily intended for being a really small and simple language for evaluating Expressions and Predicates without requiring any new dependencies or knowledge of XPath; so it is ideal for testing in camel-core. The idea was to cover 95% of the common use cases when you need a little bit of expression based script in your Camel routes.

However for much more complex use cases you are generally recommended to choose a more expressive and powerful language such as:

The simple language uses ${body} placeholders for complex expressions where the expression contains constant literals.

Deprecated: The ${} placeholders can be omitted if the expression starts with the token, or if the token is only itself.

Alternative syntax

From Camel 2.5 you can also use the alternative syntax which uses $simple{} as placeholders. This can be used in situations to avoid clashes when using for example Spring property placeholder together with Camel.

Configuring result type

From Camel 2.8 you can configure the result type of the Simple expression. For example to set the type as a java.lang.Boolean or a java.lang.Integer etc.

File language is now merged with Simple language

From Camel 2.2, the File Language is now merged with Simple language which means you can use all the file syntax directly within the simple language.

Simple Language Changes in Camel 2.9 onwards

The Simple language have been improved from Camel 2.9 to use a better syntax parser, which can do index precise error messages, so you know exactly what is wrong and where the problem is. For example if you have made a typo in one of the operators, then previously the parser would not be able to detect this, and cause the evaluation to be true. There are a few changes in the syntax which are no longer backwards compatible. When using Simple language as a Predicate then the literal text must be enclosed in either single or double quotes. For example: "${body} == 'Camel'". Notice how we have single quotes around the literal. The old style of using "body" and "header.foo" to refer to the message body and header is @deprecated, and it is encouraged to always use ${} tokens for the built-in functions.
The range operator now requires the range to be in single quote as well as shown: "${header.zip} between '30000..39999'".

To get the body of the in message: body, or in.body or ${body}.

A complex expression must use ${} placeholders, such as: Hello ${in.header.name} how are you?.

You can have multiple functions in the same expression: "Hello ${in.header.name} this is ${in.header.me} speaking". However you can not nest functions in Camel 2.8.x or older e.g., having another ${} placeholder in an existing, is not allowed. From Camel 2.9 you can nest functions.

Variables

confluenceTableSmall

Variable

Type

Description

camelId

String

Camel 2.10: the CamelContext name.

camelContext.OGNL

Object

Camel 2.11: the CamelContext invoked using a Camel OGNL expression.

collate(group)

List

Camel 2.17: The collate function iterates the message body and groups the data into sub lists of specified size. This can be used with the Splitter EIP to split a message body and group/batch the split sub messages into a group of N sub lists. This method works similar to the collate method in Groovy.

exchange

Exchange

Camel 2.16: the Exchange.

exchange.OGNL

Object

Camel 2.16: the Exchange invoked using a Camel OGNL expression.

exchangeId

String

Camel 2.3: the exchange Id.

id

String

The input message Id.

body

Object

The input body.

in.body

Object

The input body.

body.OGNL

Object

Camel 2.3: the input body invoked using a Camel OGNL expression.

in.body.OGNL

Object

Camel 2.3: the input body invoked using a Camel OGNL expression.

bodyAs(type)

Type

Camel 2.3: Converts the body to the given type determined by its classname. The converted body can be null.

bodyAs(type).OGNL

Object

Camel 2.18: Converts the body to the given type determined by its classname and then invoke methods using a Camel OGNL expression. The converted body can be null.

mandatoryBodyAs(type)

Type

Camel 2.5: Converts the body to the given type determined by its classname, and expects the body to be not null.

mandatoryBodyAs(type).OGNL

Object

Camel 2.18: Converts the body to the given type determined by its classname and then invoke methods using a Camel OGNL expression.

out.body

Object

The output body.

header.foo

Object

Refer to the input foo header.

header[foo]

Object

Camel 2.9.2: refer to the input foo header.

headers.foo

Object

Refer to the input foo header.

headers[foo]

Object

Camel 2.9.2: refer to the input foo header.

in.header.foo

Object

Refer to the input foo header.

in.header[foo]

Object

Camel 2.9.2: refer to the input foo header.

in.headers.foo

Object

Refer to the input foo header.

in.headers[foo]

Object

Camel 2.9.2: refer to the input foo header.

header.foo[bar]

Object

Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key.

in.header.foo[bar]

Object

Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key.

in.headers.foo[bar]

Object

Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key.

header.foo.OGNL

Object

Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.header.foo.OGNL

Object

Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.headers.foo.OGNL

Object

Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

out.header.foo

Object

Refer to the out header foo.

out.header[foo]

Object

Camel 2.9.2: refer to the out header foo.

out.headers.foo

Object

Refer to the out header foo.

out.headers[foo]

Object

Camel 2.9.2: refer to the out header foo.

headerAs(key,type)

Type

Camel 2.5: Converts the header to the given type determined by its classname.

headers

Map

Camel 2.9: refer to the input headers.

in.headers

Map

Camel 2.9: refer to the input headers.

property.foo

Object

Deprecated: refer to the foo property on the exchange.

exchangeProperty.foo

Object

Camel 2.15: refer to the foo property on the exchange.

property[foo]

Object

Deprecated: refer to the foo property on the exchange.

exchangeProperty[foo]

Object

Camel 2.15: refer to the foo property on the exchange.

property.foo.OGNL

Object

Deprecated: refer to the foo property on the exchange and invoke its value using a Camel OGNL expression.

exchangeProperty.foo.OGNL

Object

Camel 2.15: refer to the foo property on the exchange and invoke its value using a Camel OGNL expression.

sys.foo

String

Refer to the system property foo.

sysenv.foo

String

Camel 2.3: refer to the system environment property foo.

exception

Object

Camel 2.4: Refer to the exception object on the exchange, is null if no exception set on exchange. Will fallback and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.OGNL

Object

Camel 2.4: Refer to the exchange exception invoked using a Camel OGNL expression object

exception.message

String

Refer to the exception.message on the exchange, is null if no exception set on exchange. Will fallback and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.stacktrace

String

Camel 2.6. Refer to the exception.stracktrace on the exchange. Result is null if no exception set on exchange. Will fallback and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

date:command:pattern

String

Date formatting using the java.text.SimpleDateFormat patterns. Supported commands are: 

  • now for current timestamp.

  • in.header.xxx or header.xxx to use the Date object in the IN header with the key xxx.

  • out.header.xxx to use the Date object in the OUT header with the key xxx.

bean:bean expression

Object

Invoking a bean expression using the Bean language. Specifying a method name you must use dot as separator. We also support the ?method=methodname syntax that is used by the Bean component.

properties:locations:key

String

Deprecated: (use properties-location instead) Camel 2.3: Lookup a property with the given key. The locations option is optional. See more at Using PropertyPlaceholder.

properties-location:locations:key

String

Camel 2.14.1: Lookup a property with the given key. The locations option is optional. See more at Using PropertyPlaceholder.

properties:key:default

String

Camel 2.14.1: Lookup a property with the given key. If the key does not exists or has no value, then an optional default value can be specified.

routeId

String

Camel 2.11: Returns the Id of the current route the Exchange is being routed.

threadName

String

Camel 2.3: Returns the name of the current thread. Can be used for logging purpose.

ref:xxx

Object

Camel 2.6: To lookup a bean from the Registry with the given Id.

type:name.field

Object

Camel 2.11: To refer to a type or field by its FQN name. To refer to a field you can append .FIELD_NAME. For example you can refer to the constant field from Exchange as: org.apache.camel.Exchange.FILE_NAME

.

null

null

Camel 2.12.3: represents a null.

random(value)

Integer

Camel 2.16.0: returns a random Integer between 0 (included) and value (excluded)

random(min,max)

Integer

Camel 2.16.0: returns a random Integer between min (included) and max (excluded)

skip(number)

Iterator

Camel 2.19: The skip function iterates the message body and skips the first number of items. This can be used with the Splitter EIP to split a message body and skip the first N number of items.

messageHistory

String

Camel 2.17: The message history of the current exchange how it has been routed. This is similar to the route stack-trace message history the error handler logs in case of an unhandled exception.

messageHistory(false)

String

Camel 2.17: As messageHistory but without the exchange details (only includes the route strack-trace). This can be used if you do not want to log sensitive data from the message itself.

OGNL expression support

Available as of Camel 2.3

Camel's OGNL support is for invoking methods only. You cannot access fields.
From Camel 2.11.1: we added special support for accessing the length field of Java arrays.

The Simple and Bean language now supports a Camel OGNL notation for invoking beans in a chain like fashion. Suppose the Message IN body contains a POJO which has a getAddress() method.

Then you can use Camel OGNL notation to access the address object:

javasimple("${body.address}") simple("${body.address.street}") simple("${body.address.zip}")

Camel understands the shorthand names for accessors, but you can invoke any method or use the real name such as:

javasimple("${body.address}") simple("${body.getAddress.getStreet}") simple("${body.address.getZip}") simple("${body.doSomething}")

You can also use the null safe operator (?.) to avoid a NPE if for example the body does not have an address

javasimple("${body?.address?.street}")

It is also possible to index in Map or List types, so you can do:

javasimple("${body[foo].name}")

To assume the body is Map based and lookup the value with foo as key, and invoke the getName method on that value.

key with spaces

If the key has space, then you must enclose the key with quotes, for example:

javasimple("${body['foo bar'].name}")

You can access the Map or List objects directly using their key name (with or without dots) :

javasimple("${body[foo]}") simple("${body[this.is.foo]}")

Suppose there was no value with the key foo then you can use the null safe operator to avoid a NPE as shown:

javasimple("${body[foo]?.name}")

You can also access List types, for example to get lines from the address you can do:

javasimple("${body.address.lines[0]}") simple("${body.address.lines[1]}") simple("${body.address.lines[2]}")

There is a special last keyword which can be used to get the last value from a list.

javasimple("${body.address.lines[last]}")

And to get the penultimate line use subtraction. In this case use last-1 for this:

javasimple("${body.address.lines[last-1]}")

And the third last is of course:

javasimple("${body.address.lines[last-2]}")

And you can call the size method on the list with

javasimple("${body.address.lines.size}")

From Camel 2.11.1 we added support for the length field for Java arrays as well. Example:

javaString[] lines = new String[]{"foo", "bar", "cat"}; exchange.getIn().setBody(lines); simple("There are ${body.length} lines")

And yes you can combine this with the operator support as shown below:

javasimple("${body.address.zip} > 1000")

Operator Support

The parser is limited to only support a single operator. To enable it the left value must be enclosed in ${}.

The syntax is:

java${leftValue} OP rightValue

Where the rightValue can be a String literal enclosed in ' ', null, a constant value or another expression enclosed in ${}.

Important

There must be spaces around the operator.

Camel will automatically type convert the rightValue type to the leftValue type, so it is possible to for example, convert a string into a numeric so you can use > comparison for numeric values.

The following operators are supported:

Operator

Description

==

Equals.

=~

Camel 2.16: equals ignore case (will ignore case when comparing String values).

>

Greater than.

>=

Greater than or equals.

<

Less than.

<=

Less than or equals.

!=

Not equals.

contains

For testing if contains in a string based value.

not contains

For testing if not contains in a string based value.

regex

For matching against a given regular expression pattern defined as a String value.

not regex

For not matching against a given regular expression pattern defined as a String value.

in

For matching if in a set of values, each element must be separated by comma.

If you want to include an empty value, then it must be defined using double comma, eg ',,bronze,silver,gold', which
is a set of four values with an empty value and then the three medals.

not in

For matching if not in a set of values, each element must be separated by comma.

If you want to include an empty value, then it must be defined using double comma. Example: ',,bronze,silver,gold', which
is a set of four values with an empty value and then the three medals.

is

For matching if the left hand side type is an instanceof the value.

not is

For matching if the left hand side type is not an instanceof the value.

range

For matching if the left hand side is within a range of values defined as numbers: from..to.

From Camel 2.9: the range values must be enclosed in single quotes.

not range

For matching if the left hand side is not within a range of values defined as numbers: from..to.

From Camel 2.9: the range values must be enclosed in single quotes.

starts with

Camel 2.17.1, 2.18: For testing if the left hand side string starts with the right hand string.

ends with

Camel 2.17.1, 2.18: For testing if the left hand side string ends with the right hand string.

And the following unary operators can be used:

Operator

Description

++

Camel 2.9: To increment a number by one. The left hand side must be a function, otherwise parsed as literal.

--

Camel 2.9: To decrement a number by one. The left hand side must be a function, otherwise parsed as literal.

\

Camel 2.9.3 to 2.10.x To escape a value, e.g., \$, to indicate a $ sign. Special: Use \n for new line, \t for tab, and \r for carriage return.

Note: Escaping is not supported using the File Language.

Note: from Camel 2.11, the escape character is no longer supported. It has been replaced with the following three escape sequences.

\n

Camel 2.11: To use newline character.

\t

Camel 2.11: To use tab character.

\r

Camel 2.11: To use carriage return character.

\}

Camel 2.18: To use the } character as text.

And the following logical operators can be used to group expressions:

Operator

Description

and

Deprecated: use && instead. The logical and operator is used to group two expressions.

or

Deprecated: use || instead. The logical or operator is used to group two expressions.

&&

Camel 2.9: The logical and operator is used to group two expressions.

||

Camel 2.9: The logical or operator is used to group two expressions.

Using and,or operators

In Camel 2.4 and older the and or or can only be used once in a simple language expression.

From Camel 2.5: you can use these operators multiple times.

The syntax for AND is:

java${leftValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

java${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

java// exact equals match simple("${in.header.foo} == 'foo'")   // ignore case when comparing, so if the header has value FOO this will match simple("${in.header.foo} =~ 'foo'") // here Camel will type convert '100' into the type of in.header.bar and if it is an Integer '100' will also be converter to an Integer simple("${in.header.bar} == '100'") simple("${in.header.bar} == 100") // 100 will be converter to the type of in.header.bar so we can do > comparison simple("${in.header.bar} > 100") Comparing with different types

When you compare with different types such as String and int, then you have to take a bit care. Camel will use the type from the left hand side as first priority. And fallback to the right hand side type if both values couldn't be compared based on that type. This means you can flip the values to enforce a specific type. Suppose the bar value above is a String. Then you can flip the equation:

javasimple("100 < ${in.header.bar}")

which then ensures the int type is used as first priority.

This may change in the future if the Camel team improves the binary comparison operations to prefer numeric types over String based. It's most often the String type which causes problem when comparing with numbers.

java// testing for null simple("${in.header.baz} == null") // testing for not null simple("${in.header.baz} != null")

And a bit more advanced example where the right value is another expression,

javasimple("${in.header.date} == ${date:now:yyyyMMdd}") simple("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel:

javasimple("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a four digit value:

javasimple("${in.header.number} regex '\\d{4}'")

And finally an example if the header equals any of the values in the list. Each element must be separated by comma, and no space around. This also works for numbers etc, as Camel will convert each element into the type of the left hand side.

javasimple("${in.header.type} in 'gold,silver'")

And for all the last three we also support the negate test using not:

javasimple("${in.header.type} not in 'gold,silver'")

And you can test if the type is a certain instance, e.g., for instance a String:

javasimple("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all java.lang types so you can write it as:

javasimple("${in.header.type} is 'String'")

Ranges are also supported. The range interval requires numbers and both from and end are inclusive. For instance to test whether a value is between 100 and 199:

javasimple("${in.header.number} range 100..199")

Notice we use .. in the range without spaces. It is based on the same syntax as Groovy.

From Camel 2.9: the range value must be in single quotes:

javasimple("${in.header.number} range '100..199'") Can be used in Spring XML

As the Spring XML does not have all the power as the Java DSL with all its various builder methods, you have to resort to use some other languages for testing with simple operators. Now you can do this with the simple language. In the sample below we want to test if the header is a widget order:

xml<from uri="seda:orders"> <filter> <simple>${in.header.type} == 'widget'</simple> <to uri="bean:orderService?method=handleWidget"/> </filter> </from>

Using andor

If you have two expressions you can combine them with the and or or operator.

Camel 2.9 onwards

Use && or ||

For instance:

javasimple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the or is also supported. The sample would be:

javasimple("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

Note: currently and or or can only be used once in a simple language expression. This might change in the future. So you cannot do:

javasimple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and ${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

xml<from uri="seda:orders"> <filter> <simple>${in.header.foo}</simple> <to uri="mock:fooOrders"/> </filter> </from>

The Simple language can be used for the predicate test above in the Message Filter pattern, where we test if the in message has a foo header (a header with the key foo exists). If the expression evaluates to true then the message is routed to the mock:fooOrders endpoint, otherwise it is lost in the deep blue sea (wink).

The same example in Java DSL:

javafrom("seda:orders") .filter().simple("${in.header.foo}") .to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

javafrom("direct:hello") .transform().simple("Hello ${in.header.user} how are you?") .to("mock:reply");

Notice that we must use ${} placeholders in the expression now to allow Camel to parse it correctly.

And this sample uses the date command to output current date.

javafrom("direct:hello") .transform().simple("The today is ${date:now:yyyyMMdd} and it is a great day.") .to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be included in the returned string:

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator}") .to("mock:reply");

Where orderIdGenerator is the id of the bean registered in the Registry. If using Spring then it is the Spring bean id.

If we want to declare which method to invoke on the order id generator bean we must prepend .method name such as below where we invoke the generateId method.

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator.generateId}") .to("mock:reply");

We can use the ?method=methodname option that we are familiar with the Bean component itself:

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator?method=generateId}") .to("mock:reply");

From Camel 2.3: you can also convert the body to a given type, for example to ensure that it is a String you can do:

xml<transform> <simple>Hello ${bodyAs(String)} how are you?</simple> </transform>

There are a few types which have a shorthand notation, so we can use String instead of java.lang.String. These are: byte[], String, IntegerLong. All other types must use their FQN name, e.g. org.w3c.dom.Document.

It is also possible to lookup a value from a header Map in Camel 2.3:

xml<transform> <simple>The gold value is ${header.type[gold]}</simple> </transform>

In the code above we lookup the header with name type and regard it as a java.util.Map and we then lookup with the key gold and return the value. If the header is not convertible to Map an exception is thrown. If the header with name type does not exist null is returned.

From Camel 2.9: you can nest functions, such as shown below:

xml<setHeader headerName="myHeader"> <simple>${properties:${header.someKey}}</simple> </setHeader>

Referring to Constants or Enums

Available from Camel 2.11

Suppose you have an enum for customers:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/Customer.java}And in a Content Based Router we can use the Simple language to refer to this enum, to check the message which enum it matches.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/CBRSimpleTypeTest.java}

Using New Lines or Tabs in XML DSLs

Available from Camel 2.9.3

From Camel 2.9.3: it is easier to specify new lines or tabs in XML DSLs as you can escape the value now

xml<transform> <simple>The following text\nis on a new line</simple> </transform>

Leading and Trailing Whitespace Handling

Available from Camel 2.10.0

From Camel 2.10.0: the trim attribute of the expression can be used to control whether the leading and trailing whitespace characters are removed or preserved. The default of trim=true removes all whitespace characters.

xml<setBody> <simple trim="false">You get some trailing whitespace characters. </simple> </setBody>

Setting the Result Type

Available from Camel 2.8

You can now provide a result type to the Simple expression, which means the result of the evaluation will be converted to the desired type. This is most usable to define types such as boolean's, integer's, etc.

For example to set a header as a boolean type you can do:

.setHeader("cool", simple("true", Boolean.class))

And in XML DSL

xml<setHeader headerName="cool"> <!-- use resultType to indicate that the type should be a java.lang.Boolean --> <simple resultType="java.lang.Boolean">true</simple> </setHeader>

Changing Function Start and End Tokens

Available from Camel 2.9.1

You can configure the function start and end tokens - ${} using the setters changeFunctionStartToken and changeFunctionEndToken on SimpleLanguage, using Java code. From Spring XML you can define a <bean> tag with the new changed tokens in the properties as shown below:

xml<!-- configure Simple to use custom prefix/suffix tokens --> <bean id="simple" class="org.apache.camel.language.simple.SimpleLanguage"> <property name="functionStartToken" value="["/> <property name="functionEndToken" value="]"/> </bean>

In the example above we use [] as the changed tokens. Notice by changing the start/end token you change those in all the Camel applications which share the same camel-core on their classpath. For example in an OSGi server this may affect many applications, where as a Web Application as a WAR file it only affects the Web Application.

Loading Script from External Resource

Available from Camel 2.11

You can externalize the script and have Camel load it from a resource such as: classpath:, file:, or http:. This is done using the following syntax: resource:scheme:location, e.g., to refer to a file on the classpath you can do:

java.setHeader("myHeader").simple("resource:classpath:mysimple.txt")

Setting Spring beans to Exchange properties

Available from Camel 2.6

You can set a spring bean into an exchange property as shown below:

xml<bean id="myBeanId" class="my.package.MyCustomClass"/> <route> <!-- ... --> <setProperty propertyName="monitoring.message"> <simple>ref:myBeanId</simple> </setProperty> <!-- ... --> </route>

Dependencies

The Simple language is part of camel-core.

File Expression Language

File language is now merged with Simple language

From Camel 2.2: the file language is now merged with Simple language which means you can use all the file syntax directly within the simple language.

The File Expression Language is an extension to the Simple language, adding file related capabilities. These capabilities are related to common use cases working with file path and names. The goal is to allow expressions to be used with the File and FTP components for setting dynamic file patterns for both consumer and producer.

Syntax

This language is an extension to the Simple language so the Simple syntax applies also. So the table below only lists the additional. By contrast to the Simple language, the File Language also supports the use of Constant expressions to enter a fixed filename, for example.

All the file tokens use the same expression name as the method on the java.io.File object. For example: file:absolute refers to the java.io.File.getAbsolute() method.

Note: not all expressions are supported by the current Exchange. For example, the FTP component supports some of the options, whereas the File component supports all of them.

Expression

Type

File Consumer

File Producer

FTP Consumer

FTP Producer

Description

date:command:pattern

String

yes

yes

yes

yes

For date formatting using the java.text.SimpleDateFormat patterns which is an extension to the Simple language.

Additional command is: file (consumers only) for the last modified timestamp of the file.

Note: all the commands from the Simple language can also be used.

file:absolute

Boolean

yes

no

no

no

Refers to whether the file is regarded as absolute or relative.

file:absolute.path

String

yes

no

no

no

Refers to the absolute file path.

file:ext

String

yes

no

yes

no

Refers to the file extension only.

file:length

Long

yes

no

yes

no

Refers to the file length returned as a Long type.

file:modified

Date

yes

no

yes

no

Refers to the file last modified returned as a Date type.

file:name

String

yes

no

yes

no

Refers to the file name (is relative to the starting directory, see note below).

file:name.ext

String

yes

no

yes

no

Camel 2.3: refers to the file extension only.

file:name.ext.singleStringyesnoyesnoCamel 2.14.4/2.15.3: refers to the file extension. If the file extension has multiple dots, then this expression strips and only returns the last part.
file:name.noext

String

yes

no

yes

no

Refers to the file name with no extension (is relative to the starting directory, see note below).

file:name.noext.singleStringyesnoyesnoCamel 2.14.4/2.15.3: refers to the file name with no extension (is relative to the starting directory, see note below). If the file extension has multiple dots, then this expression strips only the last part, and keep the others.
file:onlyname

String

yes

no

yes

no

Refers to the file name only with no leading paths.

file:onlyname.noext

String

yes

no

yes

no

Refers to the file name only with no extension and with no leading paths.

file:onlyname.noext.singleStringyesnoyesnoCamel 2.14.4/2.15.3: refers to the file name only with no extension and with no leading paths. If the file extension has multiple dots, then this expression strips only the last part, and keep the others.
file:parent

String

yes

no

yes

no

Refers to the file parent.

file:path

String

yes

no

yes

no

Refers to the file path.

file:size

Long

yes

no

yes

no

Camel 2.5: refers to the file length returned as a Long type.

File Token Example

Relative Paths

We have a java.io.File handle for the file hello.txt in the following relative directory: .\filelanguage\test. And we configure our endpoint to use this starting directory .\filelanguage.

The file tokens returned are:

Expression

Returns

file:absolute

false

file:absolute.path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:ext

txt

file:name

test\hello.txt

file:name.ext

txt

file:name.noext

test\hello

file:onlyname

hello.txt

file:onlyname.noext

hello

file:parent

filelanguage\test

file:path

filelanguage\test\hello.txt

Absolute Paths

We have a java.io.File handle for the file hello.txt in the following absolute directory: \workspace\camel\camel-core\target\filelanguage\test. And we configure out endpoint to use the absolute starting directory: \workspace\camel\camel-core\target\filelanguage.

The file tokens return are:

Expression

Returns

file:absolute

true

file:absolute.path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:ext

txt

file:name

test\hello.txt

file:name.ext

txt

file:name.noext

test\hello

file:onlyname

hello.txt

file:onlyname.noext

hello

file:parent

\workspace\camel\camel-core\target\filelanguage\test

file:path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

Examples

You can enter a fixed Constant expression such as myfile.txt:

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup folder with the current date as a sub folder. This can be achieved using an expression like:

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names are also supported so suppose the backup folder should be a sibling folder then you can append .. as:

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the Simple language we have access to all the goodies from this language also, so in this use case we want to use the in.header.type as a parameter in the dynamic expression:

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.noext}.bak"

If you have a custom Date you want to use in the expression then Camel supports retrieving dates from the message header.

fileName="orders/order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

And finally we can also use a bean expression to invoke a POJO class that generates some String output (or convertible to String) to be used:

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use the File Language, Simple and the Bean language in one combined expression. This is pretty powerful for those common file path patterns.

Using Spring's PropertyPlaceholderConfigurer with the File Component

In Camel you can use the File Language directly from the Simple language which makes a Content Based Router easier to do in Spring XML, where we can route based on file extensions as shown below:

<from uri="file://input/orders"/>
  <choice>
    <when>
      <simple>${file:ext} == 'txt'</simple>
      <to uri="bean:orderService?method=handleTextFiles"/>
    </when>
    <when>
      <simple>${file:ext} == 'xml'</simple>
      <to uri="bean:orderService?method=handleXmlFiles"/>
    </when>
    <otherwise>
      <to uri="bean:orderService?method=handleOtherFiles"/>
    </otherwise>
  </choice>

If you use the fileName option on the File endpoint to set a dynamic filename using the File Language then make sure you use the alternative syntax (available from Camel 2.5) to avoid clashing with Spring's PropertyPlaceholderConfigurer.

bundle-context.xml
<bean id="propertyPlaceholder" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
  <property name="location" value="classpath:bundle-context.cfg"/>
</bean>

<bean id="sampleRoute" class="SampleRoute">
  <property name="fromEndpoint" value="${fromEndpoint}"/>
  <property name="toEndpoint" value="${toEndpoint}"/>
</bean>
bundle-context.cfg
fromEndpoint=activemq:queue:test
toEndpoint=file://fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

Notice how we use the $simple{} syntax in the toEndpoint above. If you don't do this, they will clash and Spring will throw an exception:

org.springframework.beans.factory.BeanDefinitionStoreException:
Invalid bean definition with name 'sampleRoute' defined in class path resource [bundle-context.xml]:
Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

The File language is part of camel-core.

SQL Language

The SQL support is added by JoSQL and is primarily used for performing SQL queries on in-memory objects. If you prefer to perform actual database queries then check out the JPA component.

Looking for the SQL component

Camel has both a SQL language and a SQL Component. This page is about the SQL language. Click on SQL Component if you are looking for the component instead.

To use SQL in your camel routes you need to add the a dependency on camel-josql which implements the SQL language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency>
  <groupId>org.apache.camel</groupId>
  <artifactId>camel-josql</artifactId>
  <version>x.x.x</version>
  <!-- use the same version as your Camel core version -->
</dependency>

Camel supports SQL to allow an Expression or Predicate to be used in the DSL or Xml Configuration. For example you could use SQL to create an Predicate in a Message Filter or as an Expression for a Recipient List.

from("queue:foo").setBody().sql("select * from MyType").to("queue:bar")

And the spring DSL:

   <from uri="queue:foo"/>
   <setBody>
       <sql>select * from MyType</sql>
   </setBody>
   <to uri="queue:bar"/>

Variables

Variable

Type

Description

exchange

Exchange

the Exchange object

in

Message

the exchange.in message

out

Message

the exchange.out message

the property key

Object

the Exchange properties

the header key

Object

the exchange.in headers

the variable key

Object

if any additional variables is added using setVariables method

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:

.setHeader("myHeader").sql("resource:classpath:mysql.sql")

XPath

Camel supports XPath to allow an Expression or Predicate to be used in the DSL or Xml Configuration. For example you could use XPath to create an Predicate in a Message Filter or as an Expression for a Recipient List.

Streams

If the message body is stream based, which means the input is received by Camel as a stream, then you will only be able to read the content of the stream once. Oftentimes when using XPath as Message Filter or Content Based Router the data will be accessed multiple times. Therefore use Stream caching or convert the message body to a String beforehand. This makes it safe to be re-read multiple times.

from("queue:foo") .filter().xpath("//foo")) .to("queue:bar") from("queue:foo") .choice().xpath("//foo")).to("queue:bar") .otherwise().to("queue:others");

Namespaces

You can easily use namespaces with XPath expressions using the Namespaces helper class.{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespacesFilterTest.java}

Variables

Variables in XPath is defined in different namespaces. The default namespace is http://camel.apache.org/schema/spring.

Namespace URI

Local part

Type

Description

http://camel.apache.org/xml/in/

in

Message

The exchange.in message.

http://camel.apache.org/xml/out/

out

Message

The exchange.out message.

http://camel.apache.org/xml/function/

functions

Object

Camel 2.5: Additional functions.

http://camel.apache.org/xml/variables/environment-variables

env

Object

OS environment variables.

http://camel.apache.org/xml/variables/system-properties

system

Object

Java System properties.

http://camel.apache.org/xml/variables/exchange-property

 

Object

The exchange property.

Camel will resolve variables according to either:

  • namespace given
  • no namespace given

Namespace Given

If the namespace is given then Camel is instructed exactly what to return. However when resolving either IN or OUT Camel will try to resolve a header with the given local part first, and return it. If the local part has the value body then the body is returned instead.

No Namespace Given

If there is no namespace given then Camel resolves only based on the local part. Camel will try to resolve a variable in the following steps:

  • From variables that has been set using the variable(name, value) fluent builder.
  • From message.in.header if there is a header with the given key.
  • From exchange.properties if there is a property with the given key.

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function

Argument

Type

Description

in:body

none

Object

Will return the IN message body.

in:header

the header name

Object

Will return the IN message header.

out:body

none

Object

Will return the OUT message body.

out:header

the header name

Object

Will return the OUT message header.

function:properties

key for property

String

Camel 2.5: To lookup a property using the Properties component (property placeholders).

function:simple

simple expression

Object

Camel 2.5: To evaluate a Simple expression.

Note: function:properties and function:simple is not supported when the return type is a NodeSet, such as when using with a Splitter EIP.

Here's an example showing some of these functions in use.{snippet:id=ex|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/language/XPathFunctionTest.java}And the new functions introduced in Camel 2.5:{snippet:id=ex|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/xml/XPathFunctionsTest.java}

Using XML Configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath expressions as follows

xml<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd"> <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring" xmlns:foo="http://example.com/person"> <route> <from uri="activemq:MyQueue"/> <filter> <xpath>/foo:person[@name='James']</xpath> <to uri="mqseries:SomeOtherQueue"/> </filter> </route> </camelContext> </beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for easier namespace based XPath expressions! See also this discussion on the mailinglist about using your own namespaces with XPath.

Setting the Result Type

The XPath expression will return a result type using native XML objects such as org.w3c.dom.NodeList. But many times you want a result type to be a String. To do this you have to instruct the XPath which result type to use.

In Java DSL:

javaxpath("/foo:person/@id", String.class)

In Spring DSL you use the resultType attribute to provide a fully qualified classname:

xml<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In @XPath:
Available as of Camel 2.1

java@XPath(value = "concat('foo-',//order/name/)", resultType = String.class) String name)

Where we use the XPath function concat to prefix the order name with foo-. In this case we have to specify that we want a String as result type so the concat function works.

Using XPath on Headers

Available as of Camel 2.11

Some users may have XML stored in a header. To apply an XPath statement to a header's value you can do this by defining the headerName attribute.

In XML DSL:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/xpath/XPathHeaderNameTest.xml}And in Java DSL you specify the headerName as the 2nd parameter as shown:

javaxpath("/invoice/@orderType = 'premium'", "invoiceDetails")

Examples

Here is a simple example using an XPath expression as a predicate in a Message Filter{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java}If you have a standard set of namespaces you wish to work with and wish to share them across many different XPath expressions you can use the NamespaceBuilder as shown in this example{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java}In this sample we have a choice construct. The first choice evaulates if the message has a header key type that has the value Camel. The 2nd choice evaluates if the message body has a name tag <name> which values is Kong.
If neither is true the message is routed in the otherwise block:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/xml/XPathHeaderTest.java}And the spring XML equivalent of the route:{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringXPathHeaderTest-context.xml}

XPath Injection

You can use Bean Integration to invoke a method on a bean and use various languages such as XPath to extract a value from the message and bind it to a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use your own namespace URIs in an XPath expression you can use your own copy of the XPath annotation to create whatever namespace prefixes you want to use.{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/xslt/MyXPath.java}e.g., cut and paste upper code to your own project in a different package and/or annotation name then add whatever namespace prefix/URIs you want in scope when you use your annotation on a method parameter. Then when you use your annotation on a method parameter all the namespaces you want will be available for use in your XPath expression.

Example:

javapublic class Foo { @MessageDriven(uri = "activemq:my.queue") public void doSomething(@MyXPath("/ns1:foo/ns2:bar/text()") String correlationID, @Body String body) { // process the inbound message here } }

Using XPathBuilder Without an Exchange

Available as of Camel 2.3

You can now use the org.apache.camel.builder.XPathBuilder without the need for an Exchange. This comes handy if you want to use it as a helper to do custom XPath evaluations. It requires that you pass in a CamelContext since a lot of the moving parts inside the XPathBuilder requires access to the Camel Type Converter and hence why CamelContext is needed.

For example you can do something like this:

javaboolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar xyz='cheese'/></foo>"));

This will match the given predicate.

You can also evaluate for example as shown in the following three examples:

javaString name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>", String.class); Integer number = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>123</bar></foo>", Integer.class); Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3

You need to add camel-saxon as dependency to your project. It's now easier to use Saxon with the XPathBuilder which can be done in several ways as shown below. Where as the latter ones are the easiest ones.

Using a factory{snippet:id=e1|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}Using the object model
{snippet:id=e2|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}The easy one{snippet:id=e3|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}

Setting a Custom XPathFactory Using System Property

Available as of Camel 2.3

Camel now supports reading the JVM system property javax.xml.xpath.XPathFactory that can be used to set a custom XPathFactory to use.

This unit test shows how this can be done to use Saxon instead:{snippet:id=e4|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}Camel will log at INFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value: net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

To use Apache Xerces you can configure the system property:

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

Enabling Saxon from Spring DSL

Available as of Camel 2.10

Similarly to Java DSL, to enable Saxon from Spring DSL you have three options:

Specifying the factory

xml<xpath factoryRef="saxonFactory" resultType="java.lang.String">current-dateTime()</xpath>

Specifying the object model

xml<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om" resultType="java.lang.String">current-dateTime()</xpath>

Shortcut

xml<xpath saxon="true" resultType="java.lang.String">current-dateTime()</xpath>

Namespace Auditing to Aid Debugging

Available as of Camel 2.10

A large number of XPath-related issues that users frequently face are linked to the usage of namespaces. You may have some misalignment between the namespaces present in your message and those that your XPath expression is aware of or referencing. XPath predicates or expressions that are unable to locate the XML elements and attributes due to namespaces issues may simply look like "they are not working", when in reality all there is to it is a lack of namespace definition.

Namespaces in XML are completely necessary, and while we would love to simplify their usage by implementing some magic or voodoo to wire namespaces automatically, truth is that any action down this path would disagree with the standards and would greatly hinder interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by adding two new features to the XPath Expression Language and are thus accessible from both predicates and expressions.

Logging the Namespace Context of Your XPath Expression/Predicate

Every time a new XPath expression is created in the internal pool, Camel will log the namespace context of the expression under the org.apache.camel.builder.xml.XPathBuilder logger. Since Camel represents Namespace Contexts in a hierarchical fashion (parent-child relationships), the entire tree is output in a recursive manner with the following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:

  1. Enable TRACE logging on the org.apache.camel.builder.xml.XPathBuilder logger, or some parent logger such as org.apache.camel or the root logger.
  2. Enable the logNamespaces option as indicated in Auditing Namespaces, in which case the logging will occur on the INFO level.

AuditingNamespaces

Auditing namespaces

Camel is able to discover and dump all namespaces present on every incoming message before evaluating an XPath expression, providing all the richness of information you need to help you analyse and pinpoint possible namespace issues. To achieve this, it in turn internally uses another specially tailored XPath expression to extract all namespace mappings that appear in the message, displaying the prefix and the full namespace URI(s) for each individual mapping.

Some points to take into account:

  • The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/1998/namespace") is suppressed from the output because it adds no value.
  • Default namespaces are listed under the DEFAULT keyword in the output.
  • Keep in mind that namespaces can be remapped under different scopes. Think of a top-level 'a' prefix which in inner elements can be assigned a different namespace, or the default namespace changing in inner scopes. For each discovered prefix, all associated URIs are listed.

You can enable this option in Java DSL and Spring DSL.

Java DSL:

javaXPathBuilder.xpath("/foo:person/@id", String.class).logNamespaces()

Spring DSL:

xml<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

The result of the auditing will be appear at the INFO level under the org.apache.camel.builder.xml.XPathBuilder logger and will look like the following:

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered in message: {xmlns:a=[http://apache.org/camel], DEFAULT=[http://apache.org/default], xmlns:b=[http://apache.org/camelA, http://apache.org/camelB]}

Loading Script from External Resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as: classpath:, file: or http:.
This is done using the following syntax: resource:scheme:location, e.g., to refer to a file on the classpath you can do:

.setHeader("myHeader").xpath("resource:classpath:myxpath.txt", String.class)

Dependencies

The XPath language is part of camel-core.

XQuery

Camel supports XQuery to allow an Expression or Predicate to be used in the DSL or Xml Configuration. For example you could use XQuery to create an Predicate in a Message Filter or as an Expression for a Recipient List.

Options

confluenceTableSmall

Name

Default Value

Description

allowStAX

false

Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

Examples

from("queue:foo").filter(). xquery("//foo"). to("queue:bar")

You can also use functions inside your query, in which case you need an explicit type conversion (or you will get a org.w3c.dom.DOMException: HIERARCHY_REQUEST_ERR) by passing the Class as a second argument to the xquery() method.

from("direct:start"). recipientList().xquery("concat('mock:foo.', /person/@city)", String.class);

Variables

The IN message body will be set as the contextItem. Besides this these Variables is also added as parameters:

Variable

Type

Description

exchange

Exchange

The current Exchange

in.body

Object

The In message's body

out.body

Object

The OUT message's body (if any)

in.headers.*

Object

You can access the value of exchange.in.headers with key foo by using the variable which name is in.headers.foo

out.headers.*

Object

You can access the value of exchange.out.headers with key foo by using the variable which name is out.headers.foo variable

key name

Object

Any exchange.properties and exchange.in.headers and any additional parameters set using setParameters(Map). These parameters is added with they own key name, for instance if there is an IN header with the key name foo then its added as foo.

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath expressions as follows

xml<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:foo="http://example.com/person" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd"> <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"> <route> <from uri="activemq:MyQueue"/> <filter> <xquery>/foo:person[@name='James']</xquery> <to uri="mqseries:SomeOtherQueue"/> </filter> </route> </camelContext> </beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit type conversion which is done in the xml configuration via the @type attribute:

xml <xquery type="java.lang.String">concat('mock:foo.', /person/@city)</xquery>

Using XQuery as transformation

We can do a message translation using transform or setBody in the route, as shown below:

from("direct:start"). transform().xquery("/people/person");

Notice that xquery will use DOMResult by default, so if we want to grab the value of the person node, using text() we need to tell xquery to use String as result type, as shown:

from("direct:start"). transform().xquery("/people/person/text()", String.class);

 

Using XQuery as an endpoint

Sometimes an XQuery expression can be quite large; it can essentally be used for Templating. So you may want to use an XQuery Endpoint so you can route using XQuery templates.

The following example shows how to take a message of an ActiveMQ queue (MyQueue) and transform it using XQuery and send it to MQSeries.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="activemq:MyQueue"/> <to uri="xquery:com/acme/someTransform.xquery"/> <to uri="mqseries:SomeOtherQueue"/> </route> </camelContext>

Examples

Here is a simple example using an XQuery expression as a predicate in a Message Filter

{snippet:id=example|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java}

This example uses XQuery with namespaces as a predicate in a Message Filter

{snippet:id=example|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java}

Learning XQuery

XQuery is a very powerful language for querying, searching, sorting and returning XML. For help learning XQuery try these tutorials

You might also find the XQuery function reference useful

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:

.setHeader("myHeader").xquery("resource:classpath:myxquery.txt", String.class)

Dependencies

To use XQuery in your camel routes you need to add the a dependency on camel-saxon which implements the XQuery language.

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).

<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-saxon</artifactId> <version>x.x.x</version> </dependency>

Pattern Appendix

There now follows a breakdown of the various Enterprise Integration Patterns that Camel supports

Messaging Systems

Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal implementation detail of the Endpoint interface and all interactions with the Message Channel are via the Endpoint interfaces.


Example

In JMS, Message Channels are represented by topics and queues such as the following

jms:queue:foo

 

This message channel can be then used within the JMS component

Using the Fluent Builders

to("jms:queue:foo")


Using the Spring XML Extensions

<to uri="jms:queue:foo"/>

 

For more details see

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

To support various message exchange patterns like one way Event Message and Request Reply messages Camel uses an Exchange interface which has a pattern property which can be set to InOnly for an Event Message which has a single inbound Message, or InOut for a Request Reply where there is an inbound and outbound message.

Here is a basic example of sending a Message to a route in InOnly and InOut modes

Requestor Code

//InOnly
getContext().createProducerTemplate().sendBody("direct:startInOnly", "Hello World");

//InOut
String result = (String) getContext().createProducerTemplate().requestBody("direct:startInOut", "Hello World");

Route Using the Fluent Builders

from("direct:startInOnly").inOnly("bean:process");

from("direct:startInOut").inOut("bean:process");

Route Using the Spring XML Extensions

<route>
  <from uri="direct:startInOnly"/>
  <inOnly uri="bean:process"/>
</route>

<route>
  <from uri="direct:startInOut"/>
  <inOut uri="bean:process"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent Endpoint instances which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as follows{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/PipelineTest.java}Though pipeline is the default mode of operation when you specify multiple outputs in Camel. The opposite to pipeline is multicast; which fires the same message into each of its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element

xml<route> <from uri="activemq:SomeQueue"/> <pipeline> <bean ref="foo"/> <bean ref="bar"/> <to uri="activemq:OutputQueue"/> </pipeline> </route>

In the above the pipeline element is actually unnecessary, you could use this:

xml<route> <from uri="activemq:SomeQueue"/> <bean ref="foo"/> <bean ref="bar"/> <to uri="activemq:OutputQueue"/> </route>

which is a bit more explicit.

However if you wish to use <multicast/> to avoid a pipeline - to send the same message into multiple pipelines - then the <pipeline/> element comes into its own:

xml<route> <from uri="activemq:SomeQueue"/> <multicast> <pipeline> <bean ref="something"/> <to uri="log:Something"/> </pipeline> <pipeline> <bean ref="foo"/> <bean ref="bar"/> <to uri="activemq:OutputQueue"/> </pipeline> </multicast> </route>

In the above example we are routing from a single Endpoint to a list of different endpoints specified using URIs. If you find the above a bit confusing, try reading about the Architecture or try the Examples

Using This Pattern

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination, evaluate some predicate then choose the right output destination.

The following example shows how to route a request from an input queue:a endpoint to either queue:b, queue:c or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

Error formatting macro: snippet: java.lang.NullPointerException

Using the Spring XML Extensions

Error formatting macro: snippet: java.lang.NullPointerException

Choice without otherwise

If you use a choice without adding an otherwise, any unmatched exchanges will be dropped by default.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor in the routing logic, by using a bean to perform the transformation, or by using transform() in the DSL. You can also use a Data Format to marshal and unmarshal messages in different encodings.

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in your Registry such as your Spring XML configuration file as follows

from("activemq:SomeQueue"). beanRef("myTransformerBean", "myMethodName"). to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc. You can omit the method name parameter from beanRef() and the Bean Integration will try to deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java}

or you can use the DSL to explicitly configure the transformation

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java}

Use Spring XML

You can also use Spring XML Extensions to do a transformation. Basically any Expression language can be substituted inside the transform element as shown below

{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml}

Or you can use the Bean Integration to invoke a bean

<route> <from uri="activemq:Input"/> <bean ref="myBeanName" method="doTransform"/> <to uri="activemq:Output"/> </route>

You can also use Templating to consume a message from one destination, transform it with something like Velocity or XQuery and then send it on to another destination. For example using InOnly (one way messaging)

from("activemq:My.Queue"). to("velocity:com/acme/MyResponse.vm"). to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on ActiveMQ with a template generated response, then sending responses back to the JMSReplyTo Destination you could use this.

from("activemq:My.Queue"). to("velocity:com/acme/MyResponse.vm"); Using This Pattern

Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

When using the DSL to create Routes you typically refer to Message Endpoints by their URIs rather than directly using the Endpoint interface. Its then a responsibility of the CamelContext to create and activate the necessary Endpoint instances using the available Component implementations.

Example

The following example route demonstrates the use of a File Consumer Endpoint and JMS Producer Endpoint


Using the Fluent Builders

from("file://local/router/messages/foo")
	.to("jms:queue:foo");

 

Using the Spring XML Extensions

<route>
	<from uri="file://local/router/messages/foo"/>
	<to uri="jms:queue:foo"/>
</route>

 

Dynamic To

Available as of Camel 2.16

There is a new <toD> that allows to send a message to a dynamic computed Endpoint using one or more Expression that are concat together. By default the Simple language is used to compute the endpoint. For example to send a message to a endpoint defined by a header you can do

<route>
  <from uri="direct:start"/>
  <toD uri="${header.foo}"/>
</route>

And in Java DSL

from("direct:start")
  .toD("${header.foo}");

 

You can also prefix the uri with a value because by default the uri is evaluated using the Simple language

<route>
  <from uri="direct:start"/>
  <toD uri="mock:${header.foo}"/>
</route>

And in Java DSL

from("direct:start")
  .toD("mock:${header.foo}");

In the example above we compute an endpoint that has prefix "mock:" and then the header foo is appended. So for example if the header foo has value order, then the endpoint is computed as "mock:order".

You can also use other languages than Simple such as XPath - this requires to prefix with language: as shown below (simple language is the default language). If you do not specify language: then the endpoint is a component name. And in some cases there is both a component and language with the same name such as xquery.

<route>
  <from uri="direct:start"/>
  <toD uri="language:xpath:/order/@uri"/>
</route>

This is done by specifying the name of the language followed by a colon.

from("direct:start")
  .toD("language:xpath:/order/@uri");

You can also concat multiple Language(s) together using the plus sign + such as shown below:

<route>
  <from uri="direct:start"/>
  <toD uri="jms:${header.base}+language:xpath:/order/@id"/>
</route>

In the example above the uri is a combination of Simple language and XPath where the first part is simple (simple is default language). And then the plus sign separate to another language, where we specify the language name followed by a colon

from("direct:start")
  .toD("jms:${header.base}+language:xpath:/order/@id");

You can concat as many languages as you want, just separate them with the plus sign

The Dynamic To has a few options you can configure

NameDefault ValueDescription
uri Mandatory: The uri to use. See above
pattern To set a specific Exchange Pattern to use when sending to the endpoint. The original MEP is restored afterwards.
cacheSize Allows to configure the cache size for the ProducerCache which caches producers for reuse. Will by default use the default cache size which is 1000. Setting the value to -1 allows to turn off the cache all together.
ignoreInvalidEndpointfalseWhether to ignore an endpoint URI that could not be resolved. If disabled, Camel will throw an exception identifying the invalid endpoint URI.

 

For more details see

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Messaging Channels

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following components

  • SEDA for in-VM seda based messaging
  • JMS for working with JMS Queues for high performance, clustering and load balancing
  • JPA for using a database as a simple message queue
  • XMPP for point-to-point communication over XMPP (Jabber)
  • and others

The following example demonstrates point to point messaging using the JMS component 

Using the Fluent Builders

from("direct:start")
	.to("jms:queue:foo");

 

Using the Spring XML Extensions

<route>
	<from uri="direct:start"/>
	<to uri="jms:queue:foo"/>
</route>

 

 

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using for example the following components:

  • JMS for working with JMS Topics for high performance, clustering and load balancing
  • XMPP when using rooms for group communication
  • SEDA for working with SEDA in the same CamelContext which can work in pub-sub, but allowing multiple consumers.
  • VM as SEDA but for intra-JVM.

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this keeps the producer and consumer decoupled but lets you control the fine grained routing configuration using the DSL or Xml Configuration.

Using the Fluent Builders

Error formatting macro: snippet: java.lang.NullPointerException

Using the Spring XML Extensions

Error formatting macro: snippet: java.lang.NullPointerException

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Dead Letter Channel

Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel processor which is an Error Handler.

Differences Between The DeadLetterChannel And The DefaultErrorHandler

The DefaultErrorHandler does very little: it ends the Exchange immediately and propagates the thrown Exception back to the caller.

The DeadLetterChannel lets you control behaviors including redelivery, whether to propagate the thrown Exception to the caller (the handled option), and where the (failed) Exchange should now be routed to.

The DeadLetterChannel is also by default configured to not be verbose in the logs, so when a message is handled and moved to the dead letter endpoint, then there is nothing logged. If you want some level of logging you can use the various options on the redelivery policy / dead letter channel to configure this. For example if you want the message history then set logExhaustedMessageHistory=true (and logHandled=true for Camel 2.15.x or older).

When the DeadLetterChannel moves a message to the dead letter endpoint, any new Exception thrown is by default handled by the dead letter channel as well. This ensures that the DeadLetterChannel will always succeed. From Camel 2.15: this behavior can be changed by setting the option deadLetterHandleNewException=false. Then if a new Exception is thrown, then the dead letter channel will fail and propagate back that new Exception (which is the behavior of the default error handler). When a new Exception occurs then the dead letter channel logs this at WARN level. This can be turned off by setting logNewException=false.

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to process; but the chances are if its tried a few more times with some time delay then it will complete fine. So we typically wish to use some kind of redelivery policy to decide how many times to try redeliver a message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize things like

  • The number of times a message is attempted to be redelivered before it is considered a failure and sent to the dead letter channel.
  • The initial redelivery timeout.
  • Whether or not exponential backoff is used, i.e., the time between retries increases using a backoff multiplier.
  • Whether to use collision avoidance to add some randomness to the timings.
  • Delay pattern (see below for details).
  • Camel 2.11: Whether to allow redelivery during stopping/shutdown.

Once all attempts at redelivering the message fails then the message is forwarded to the dead letter queue.

About Moving Exchange to Dead Letter Queue and Using handled()

handled() on Dead Letter Channel

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue (the dead letter endpoint). The exchange is then complete and from the client point of view it was processed. As such the Dead Letter Channel have handled the Exchange.

For instance configuring the dead letter channel as:

Using the Fluent Builders

javaerrorHandler(deadLetterChannel("jms:queue:dead") .maximumRedeliveries(3).redeliveryDelay(5000));

Using the Spring XML Extensions

xml<route errorHandlerRef="myDeadLetterErrorHandler"> <!-- ... --> </route> <bean id="myDeadLetterErrorHandler" class="org.apache.camel.builder.DeadLetterChannelBuilder"> <property name="deadLetterUri" value="jms:queue:dead"/> <property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/> </bean> <bean id="myRedeliveryPolicyConfig" class="org.apache.camel.processor.RedeliveryPolicy"> <property name="maximumRedeliveries" value="3"/> <property name="redeliveryDelay" value="5000"/> </bean>

The Dead Letter Channel above will clear the caused exception setException(null), by moving the caused exception to a property on the Exchange, with the key Exchange.EXCEPTION_CAUGHT. Then the Exchange is moved to the jms:queue:dead destination and the client will not notice the failure.

About Moving Exchange to Dead Letter Queue and Using the Original Message

The option useOriginalMessage is used for routing the original input message instead of the current message that potentially is modified during routing.

For instance if you have this route:

java from("jms:queue:order:input") .to("bean:validateOrder") .to("bean:transformOrder") .to("bean:handleOrder");

The route listen for JMS messages and validates, transforms and handle it. During this the Exchange payload is transformed/modified. So in case something goes wrong and we want to move the message to another JMS destination, then we can configure our Dead Letter Channel with the useOriginalMessage option. But when we move the Exchange to this destination we do not know in which state the message is in. Did the error happen in before the transformOrder or after? So to be sure we want to move the original input message we received from jms:queue:order:input. So we can do this by enabling the useOriginalMessage option as shown below:

java// will use original body errorHandler(deadLetterChannel("jms:queue:dead") .useOriginalMessage() .maximumRedeliveries(5) .redeliverDelay(5000);

Then the messages routed to the jms:queue:dead is the original input. If we want to manually retry we can move the JMS message from the failed to the input queue, with no problem as the message is the same as the original we received.

OnRedelivery

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is executed just before every redelivery attempt. This can be used for the situations where you need to alter the message before its redelivered. See below for sample.

onException and onRedeliver

We also support for per onException to set an onRedeliver. That means you can do special on redelivery for different exceptions, as opposed to onRedelivery set on Dead Letter Channel can be viewed as a global scope.

Redelivery Default Values

Redelivery is disabled by default.

The default redeliver policy will use the following values:

  • maximumRedeliveries=0
  • redeliverDelay=1000L (1 second)
  • maximumRedeliveryDelay = 60 * 1000L (60 seconds)
  • backOffMultiplier and useExponentialBackOff are ignored.
  • retriesExhaustedLogLevel=LoggingLevel.ERROR
  • retryAttemptedLogLevel=LoggingLevel.DEBUG
  • Stack traces are logged for exhausted messages, from Camel 2.2.
  • Handled exceptions are not logged, from Camel 2.3.
  • logExhaustedMessageHistory is true for default error handler, and false for dead letter channel.
  • logExhaustedMessageBody Camel 2.17: is disabled by default to avoid logging sensitive message body/header details. If this option is true, then logExhaustedMessageHistory must also be true.

The maximum redeliver delay ensures that a delay is never longer than the value, default 1 minute. This can happen when useExponentialBackOff=true.

The maximumRedeliveries is the number of re-delivery attempts. By default Camel will try to process the exchange 1 + 5 times. 1 time for the normal attempt and then 5 attempts as redeliveries.
Setting the maximumRedeliveries=-1 (or < -1) will then always redelivery (unlimited).
Setting the maximumRedeliveries=0 will disable re-delivery.

Camel will log delivery failures at the DEBUG logging level by default. You can change this by specifying retriesExhaustedLogLevel and/or retryAttemptedLogLevel. See ExceptionBuilderWithRetryLoggingLevelSetTest for an example.

You can turn logging of stack traces on/off. If turned off Camel will still log the redelivery attempt. It's just much less verbose.

Redeliver Delay Pattern

Delay pattern is used as a single option to set a range pattern for delays. When a delay pattern is in use the following options no longer apply:

  • delay
  • backOffMultiplier
  • useExponentialBackOff
  • useCollisionAvoidance
  • maximumRedeliveryDelay

The idea is to set groups of ranges using the following syntax: limit:delay;limit 2:delay 2;limit 3:delay 3;...;limit N:delay N

Each group has two values separated with colon:

  • limit = upper limit
  • delay = delay in milliseconds
    And the groups is again separated with semi-colon. The rule of thumb is that the next groups should have a higher limit than the previous group.

Lets clarify this with an example:
delayPattern=5:1000;10:5000;20:20000

That gives us three groups:

  • 5:1000
  • 10:5000
  • 20:20000

Resulting in these delays between redelivery attempts:

  • Redelivery attempt number 1..4 = 0ms (as the first group start with 5)
  • Redelivery attempt number 5..9 = 1000ms (the first group)
  • Redelivery attempt number 10..19 = 5000ms (the second group)
  • Redelivery attempt number 20.. = 20000ms (the last group)

Note: The first redelivery attempt is 1, so the first group should start with 1 or higher.

You can start a group with limit 1 to e.g., have a starting delay: delayPattern=1:1000;5:5000

  • Redelivery attempt number 1..4 = 1000ms (the first group)
  • Redelivery attempt number 5.. = 5000ms (the last group)

There is no requirement that the next delay should be higher than the previous. You can use any delay value you like. For example with delayPattern=1:5000;3:1000 we start with 5 sec delay and then later reduce that to 1 second.

Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to the message to indicate how many times its been redelivered.
Before Camel 2.6: The header is CamelRedeliveryCounter, which is also defined on the Exchange.REDELIVERY_COUNTER.
From Camel 2.6: The header CamelRedeliveryMaxCounter, which is also defined on the Exchange.REDELIVERY_MAX_COUNTER, contains the maximum redelivery setting. This header is absent if you use retryWhile or have unlimited maximum redelivery configured.

And a boolean flag whether it is being redelivered or not (first attempt). The header CamelRedelivered contains a boolean if the message is redelivered or not, which is also defined on the Exchange.REDELIVERED.

Dynamically Calculated Delay From the Exchange

In Camel 2.9 and 2.8.2: The header is CamelRedeliveryDelay, which is also defined on the Exchange.REDELIVERY_DELAY. If this header is absent, normal redelivery rules apply.

Which Endpoint Failed

Available as of Camel 2.1

When Camel routes messages it will decorate the Exchange with a property that contains the last endpoint Camel send the Exchange to:

javaString lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT, String.class);

The Exchange.TO_ENDPOINT have the constant value CamelToEndpoint. This information is updated when Camel sends a message to any endpoint. So if it exists its the last endpoint which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be moved into the dead letter queue, then Camel also decorates the Exchange with another property that contains that last endpoint:

javaString failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT, String.class);

The Exchange.FAILURE_ENDPOINT have the constant value CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter queue and use that for error reporting. This is usable if the Camel route is a bit dynamic such as the dynamic Recipient List so you know which endpoints failed.

Note: this information is retained on the Exchange even if the message is subsequently processed successfully by a given endpoint only to fail, for example, in local Bean processing instead. So, beware that this is a hint that helps pinpoint errors.

javafrom("activemq:queue:foo") .to("http://someserver/somepath") .beanRef("foo");

Now suppose the route above and a failure happens in the foo bean. Then the Exchange.TO_ENDPOINT and Exchange.FAILURE_ENDPOINT will still contain the value of http://someserver/somepath.

OnPrepareFailure

Available as of Camel 2.16

Before the exchange is sent to the dead letter queue, you can use onPrepare to allow a custom Processor to prepare the exchange, such as adding information why the Exchange failed.

For example, the following processor adds a header with the exception message:

java public static class MyPrepareProcessor implements Processor { @Override public void process(Exchange exchange) throws Exception { Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class); exchange.getIn().setHeader("FailedBecause", cause.getMessage()); } }

Then configure the error handler to use the processor as follows:

javaerrorHandler(deadLetterChannel("jms:dead").onPrepareFailure(new MyPrepareProcessor()));

 

Configuring this from XML DSL is as follows:

xml<bean id="myPrepare" class="org.apache.camel.processor.DeadLetterChannelOnPrepareTest.MyPrepareProcessor"/> <errorHandler id="dlc" type="DeadLetterChannel" deadLetterUri="jms:dead" onPrepareFailureRef="myPrepare"/>

 

The onPrepare is also available using the default error handler.

Which Route Failed

Available as of Camel 2.10.4/2.11

When Camel error handler handles an error such as Dead Letter Channel or using Exception Clause with handled=true, then Camel will decorate the Exchange with the route id where the error occurred.

Example:

javaString failedRouteId = exchange.getProperty(Exchange.FAILURE_ROUTE_ID, String.class);

The Exchange.FAILURE_ROUTE_ID have the constant value CamelFailureRouteId. This allows for example you to fetch this information in your dead letter queue and use that for error reporting.

Control if Redelivery is Allowed During Stopping/Shutdown

Available as of Camel 2.11

Before Camel 2.10, Camel would perform redelivery while stopping a route, or shutting down Camel. This has improved a bit in Camel 2.10: Camel will no longer perform redelivery attempts when shutting down aggressively, e.g., during Graceful Shutdown and timeout hit.

From Camel 2.11: there is a new option allowRedeliveryWhileStopping which you can use to control if redelivery is allowed or not; notice that any in progress redelivery will still be executed. This option can only disallow any redelivery to be executed after the stopping of a route/shutdown of Camel has been triggered. If a redelivery is disallowed then a RejectedExcutionException is set on the Exchange and the processing of the Exchange stops. This means any consumer will see the Exchange as failed due the RejectedExcutionException. The default value is true for backward compatibility.

For example, the following snippet shows how to do this with Java DSL and XML DSL:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RedeliveryErrorHandlerNoRedeliveryOnShutdownTest.java}And the sample sample with XML DSL{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringRedeliveryErrorHandlerNoRedeliveryOnShutdownTest.xml}

Samples

The following example shows how to configure the Dead Letter Channel configuration using the DSL{snippet:id=e3|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ErrorHandlerTest.java}You can also configure the RedeliveryPolicy as this example shows{snippet:id=e4|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ErrorHandlerTest.java}

How Can I Modify the Exchange Before Redelivery?

We support directly in Dead Letter Channel to set a Processor that is executed before each redelivery attempt. When Dead Letter Channel is doing redeliver its possible to configure a Processor that is executed just before every redelivery attempt. This can be used for the situations where you need to alter the message before its redelivered. Here we configure the Dead Letter Channel to use our processor MyRedeliveryProcessor to be executed before each redelivery.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DeadLetterChannelOnRedeliveryTest.java}And this is the processor MyRedeliveryProcessor where we alter the message.{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DeadLetterChannelOnRedeliveryTest.java}

How Can I Log What Caused the Dead Letter Channel to be Invoked?

You often need to know what went wrong that caused the Dead Letter Channel to be used and it does not offer logging for this purpose. So the Dead Letter Channel's endpoint can be set to a endpoint of our own (such as direct:deadLetterChannel). We write a route to accept this Exchange and log the Exception, then forward on to where we want the failed Exchange moved to (which might be a DLQ queue for instance). See also http://stackoverflow.com/questions/13711462/logging-camel-exceptions-and-sending-to-the-dead-letter-channel

Using This Pattern

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using among others the following components:

  • File for using file systems as a persistent store of messages
  • JMS when using persistent delivery (the default) for working with JMS Queues and Topics for high performance, clustering and load balancing
  • JPA for using a database as a persistence layer, or use any of the many other database component such as SQL, JDBC, iBATIS/MyBatis, Hibernate
  • HawtDB for a lightweight key-value persistent store

Example

The following example demonstrates illustrates the use of Guaranteed Delivery within the JMS component. By default, a message is not considered successfully delivered until the recipient has persisted the message locally guaranteeing its receipt in the event the destination becomes unavailable.

Using the Fluent Builders

from("direct:start")
	.to("jms:queue:foo");

 

Using the Spring XML Extensions

<route>
	<from uri="direct:start"/>
	<to uri="jms:queue:foo"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message Bus itself as it allows producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS component for traditional MOM support.
Also worthy of note is the XMPP component for supporting messaging over XMPP (Jabber)

Of course there are also ESB products such as Apache ServiceMix which serve as full fledged message busses.
You can interact with Apache ServiceMix from Camel in many ways, but in particular you can use the NMR or JBI component to access the ServiceMix message bus directly.

 

Example

The following demonstrates how the Camel message bus can be used to communicate with consumers and producers


Using the Fluent Builders

from("direct:start")
	.pollEnrich("file:inbox?fileName=data.txt")
	.to("jms:queue:foo");

 

Using the Spring XML Extensions

<route>
	<from uri="direct:start"/>
	<pollEnrich uri="file:inbox?fileName=data.txt"/>
	<to uri="jms:queue:foo"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Construction

Event Message

Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern on a Message which can be set to InOnly to indicate a oneway event message. Camel Components then implement this pattern using the underlying transport or protocols.

The default behaviour of many Components is InOnly such as for JMS, File or SEDA

Related

See the related Request Reply message.

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange Pattern for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the DSL.

Using the Fluent Builders

from("mq:someQueue").
  setExchangePattern(ExchangePattern.InOnly).
  bean(Foo.class);

or you can invoke an endpoint with an explicit pattern

from("mq:someQueue").
  inOnly("mq:anotherQueue");

Using the Spring XML Extensions

<route>
    <from uri="mq:someQueue"/>
    <inOnly uri="bean:foo"/>
</route>
<route>
    <from uri="mq:someQueue"/>
    <inOnly uri="mq:anotherQueue"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Error rendering macro 'include'

org.owasp.validator.html.ScanException: java.util.EmptyStackException

Correlation Identifier

Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header on a Message.

When working with the ActiveMQ or JMS components the correlation identifier header is called JMSCorrelationID. You can add your own correlation identifier to any message exchange to help correlate messages together to a single conversation (or business process).

The use of a Correlation Identifier is key to working with the Camel Business Activity Monitoring Framework and can also be highly useful when testing with simulation or canned data such as with the Mock testing framework

Some EIP patterns will spin off a sub message, and in those cases, Camel will add a correlation id on the Exchange as a property with they key Exchange.CORRELATION_ID, which links back to the source Exchange. For example the Splitter, Multicast, Recipient List, and Wire Tap EIP does this.

The following example demonstrates using the Camel JMSMessageID as the Correlation Identifier within a request/reply pattern in the JMS component

Using the Fluent Builders

from("direct:start")
	.to(ExchangePattern.InOut,"jms:queue:foo?useMessageIDAsCorrelationID=true")
	.to("mock:result");

 

Using the Spring XML Extensions

<route>
	<from uri="direct:start"/>
	<to uri="jms:queue:foo?useMessageIDAsCorrelationID=true" pattern="InOut"/>
	<to uri="mock:result"/>
</route>

See Also

Return Address

Camel supports the Return Address from the EIP patterns by using the JMSReplyTo header.

For example when using JMS with InOut the component will by default return to the address given in JMSReplyTo.

Requestor Code

getMockEndpoint("mock:bar").expectedBodiesReceived("Bye World");
template.sendBodyAndHeader("direct:start", "World", "JMSReplyTo", "queue:bar");

Route Using the Fluent Builders

from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
from("activemq:queue:foo").transform(body().prepend("Bye "));
from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

Route Using the Spring XML Extensions

<route>
  <from uri="direct:start"/>
  <to uri="activemq:queue:foo?preserveMessageQos=true"/>
</route>

<route>
  <from uri="activemq:queue:foo"/>
  <transform>
      <simple>Bye ${in.body}</simple>
  </transform>
</route>

<route>
  <from uri="activemq:queue:bar?disableReplyTo=true"/>
  <to uri="mock:bar"/>
</route>

For a complete example of this pattern, see this junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Routing

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct destination based on the contents of the message exchanges.

The following example shows how to route a request from an input seda:a endpoint to either seda:b, seda:c or seda:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

 


RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));
 
        from("direct:a")
            .choice()
                .when(header("foo").isEqualTo("bar"))
                    .to("direct:b")
                .when(header("foo").isEqualTo("cheese"))
                    .to("direct:c")
                .otherwise()
                    .to("direct:d");
    }
};

See Why can I not use when or otherwise in a Java Camel route if you have problems with the Java DSL, accepting using when or otherwise.

Using the Spring XML Extensions

 

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="direct:a"/>
        <choice>
            <when>
                <xpath>$foo = 'bar'</xpath>
                <to uri="direct:b"/>
            </when>
            <when>
                <xpath>$foo = 'cheese'</xpath>
                <to uri="direct:c"/>
            </when>
            <otherwise>
                <to uri="direct:d"/>
            </otherwise>
        </choice>
    </route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming messages from an endpoint called queue:a, which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java}You can, of course, use many different Predicate languages such as XPath, XQuery, SQL or various Scripting Languages. Here is an XPath example{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java}Here's another example of using a bean to define the filter behavior:

javafrom("direct:start") .filter().method(MyBean.class, "isGoldCustomer").to("mock:result").end() .to("mock:end"); public static class MyBean { public boolean isGoldCustomer(@Header("level") String level) { return level.equals("gold"); } }

Using the Spring XML Extensions{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/xml/buildSimpleRouteWithHeaderPredicate.xml}You can also use a method call expression (to call a method on a bean) in the Message Filter, as shown below:

xml<bean id="myBean" class="com.foo.MyBean"/> <camelContext xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="direct:a"/> <filter> <method ref="myBean" method="isGoldCustomer"/> <to uri="direct:b"/> </filter> </route> </camelContext>Filtered Endpoint Required Inside </filter> Tag

Ensure you put the endpoint you want to filter <to uri="seda:b"/> before the closing </filter> tag or the filter will not be applied. From Camel 2.8: omitting this will result in an error.

For further examples of this pattern in use you could look at the junit test case

Using stop()

Stop is a bit different than a message filter as it will filter out all messages and end the route entirely (filter only applies to its child processor). Stop is convenient to use in a Content Based Router when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word Bye in the message body. Notice how we prevent this in the when() predicate by using the .stop().{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RouteStopTest.java}

How To Determine If An  Exchange Was Filtered

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange that states if it was filtered or not.

The property has the key Exchange.FILTER_MATCHED, which has the String value of CamelFilterMatched. Its value is a boolean indicating true or false. If the value is true then the Exchange was routed in the filter block. This property will be visible within the Message Filter block who's Predicate matches (value set to true), and to the steps immediately following the Message Filter with the value set based on the results of the last Message Filter Predicate evaluated.

Using This Pattern

Dynamic Router

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the dependency of the router on all possible destinations while maintaining its efficiency.

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a dynamic Routing Slip which evaluates the slip on-the-fly.

Beware

You must ensure the expression used for the dynamicRouter such as a bean, will return null to indicate the end. Otherwise the dynamicRouter will keep repeating endlessly.

Options

confluenceTableSmall

Name

Default Value

Description

uriDelimiter

,

Delimiter used if the Expression returned multiple endpoints.

ignoreInvalidEndpoints

false

If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will thrown an exception stating the endpoint uri is not valid.

cacheSize

1000

Camel 2.13.1/2.12.4: Allows to configure the cache size for the ProducerCache which caches producers for reuse in the routing slip. Will by default use the default cache size which is 1000. Setting the value to -1 allows to turn off the cache all together.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5 the Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the Exchange which contains the current endpoint as it advanced though the slip. This allows you to know how far we have processed in the slip. (It's a slip because the Dynamic Router implementation is based on top of Routing Slip).

Java DSL

In Java DSL you can use the dynamicRouter as shown below:

{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DynamicRouterTest.java}

Which will leverage a Bean to compute the slip on-the-fly, which could be implemented as follows:

{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DynamicRouterTest.java}

Mind that this example is only for show and tell. The current implementation is not thread safe. You would have to store the state on the Exchange, to ensure thread safety, as shown below:

{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DynamicRouterExchangePropertiesTest.java}

You could also store state as message headers, but they are not guaranteed to be preserved during routing, where as properties on the Exchange are. Although there was a bug in the method call expression, see the warning below.

Using beans to store state

Mind that in Camel 2.9.2 or older, when using a Bean the state is not propagated, so you will have to use a Processor instead. This is fixed in Camel 2.9.3 onwards.

Spring XML

The same example in Spring XML would be:

{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringDynamicRouterTest.xml}

@DynamicRouter annotation

You can also use the @DynamicRouter annotation, for example the Camel 2.4 example below could be written as follows. The route method would then be invoked repeatedly as the message is processed dynamically. The idea is to return the next endpoint uri where to go. Return null to indicate the end. You can return multiple endpoints if you like, just as the Routing Slip, where each endpoint is separated by a delimiter.

javapublic class MyDynamicRouter { @Consume(uri = "activemq:foo") @DynamicRouter public String route(@XPath("/customer/id") String customerId, @Header("Location") String location, Document body) { // query a database to find the best match of the endpoint based on the input parameteres // return the next endpoint uri, where to go. Return null to indicate the end. } }

Dynamic Router in Camel 2.4 or older

The simplest way to implement this is to use the RecipientList Annotation on a Bean method to determine where to route the message.

javapublic class MyDynamicRouter { @Consume(uri = "activemq:foo") @RecipientList public List<String> route(@XPath("/customer/id") String customerId, @Header("Location") String location, Document body) { // query a database to find the best match of the endpoint based on the input parameteres ... } }

In the above we can use the Parameter Binding Annotations to bind different parts of the Message to method parameters or use an Expression such as using XPath or XQuery.

The method can be invoked in a number of ways as described in the Bean Integration such as

Using This Pattern

Error rendering macro 'include'

null

Error rendering macro 'include'

null

Aggregator

This applies for Camel version 2.3 or newer. If you use an older version then use this Aggregator link instead.

The Aggregator from the EIP patterns allows you to combine a number of messages together into a single message.

A correlation Expression is used to determine the messages which should be aggregated together. If you want to aggregate all messages into a single message, just use a constant expression. An AggregationStrategy is used to combine all the message exchanges for a single correlation key into a single message exchange.

Aggregator options

The aggregator supports the following options:

confluenceTableSmall

Option

Default

Description

correlationExpression

 

Mandatory Expression which evaluates the correlation key to use for aggregation. The Exchange which has the same correlation key is aggregated together. If the correlation key could not be evaluated an Exception is thrown. You can disable this by using the ignoreBadCorrelationKeys option.

aggregationStrategy

 

Mandatory AggregationStrategy which is used to merge the incoming Exchange with the existing already merged exchanges. At first call the oldExchange parameter is null. On subsequent invocations the oldExchange contains the merged exchanges and newExchange is of course the new incoming Exchange.

From Camel 2.9.2 onwards the strategy can also be a TimeoutAwareAggregationStrategy implementation, supporting the timeout callback, see further below for more details.

From Camel 2.16: the strategy can also be a PreCompletionAwareAggregationStrategy implementation which then runs the completion check in pre-completion mode. See further below for more details.

strategyRef

 

A reference to lookup the AggregationStrategy in the Registry. From Camel 2.12 onwards you can also use a POJO as the AggregationStrategy, see further below for details.

strategyMethodName

 

Camel 2.12: This option can be used to explicit declare the method name to use, when using POJOs as the AggregationStrategy. See further below for more details.

strategyMethodAllowNull

false

Camel 2.12: If this option is false then the aggregate method is not used for the very first aggregation. If this option is true then null values is used as the oldExchange (at the very first aggregation), when using POJOs as the AggregationStrategy. See further below for more details.

completionSize

 

Number of messages aggregated before the aggregation is complete. This option can be set as either a fixed value or using an Expression which allows you to evaluate a size dynamically - will use Integer as result. If both are set Camel will fallback to use the fixed value if the Expression result was null or 0.

completionTimeout

 

Time in millis that an aggregated exchange should be inactive before its complete. This option can be set as either a fixed value or using an Expression which allows you to evaluate a timeout dynamically - will use Long as result. If both are set Camel will fallback to use the fixed value if the Expression result was null or 0. You cannot use this option together with completionInterval, only one of the two can be used.

completionInterval

 

A repeating period in millis by which the aggregator will complete all current aggregated exchanges. Camel has a background task which is triggered every period. You cannot use this option together with completionTimeout, only one of them can be used.

completionPredicate

 

A Predicate to indicate when an aggregated exchange is complete.

From Camel 2.15: if this is not specified and the AggregationStrategy object implements Predicate, the aggregationStrategy object will be used as the completionPredicate.

completionFromBatchConsumer

false

This option is if the exchanges are coming from a Batch Consumer. Then when enabled the Aggregator2 will use the batch size determined by the Batch Consumer in the message header CamelBatchSize. See more details at Batch Consumer. This can be used to aggregate all files consumed from a File endpoint in that given poll.

forceCompletionOnStop

false

Camel 2.9 Indicates to complete all current aggregated exchanges when the context is stopped

completeAllOnStopfalseCamel 2.16: Indicates to wait to complete all current and partial (pending) aggregated exchanges when the context is stopped. This also means that we will wait for all pending exchanges which are stored in the aggregation repository to complete so the repository is empty before we can stop.  You may want to enable this when using the memory based aggregation repository that is memory based only, and do not store data on disk. When this option is enabled, then the aggregator is waiting to complete all those exchanges before its stopped, when stopping CamelContext or the route using it.

eagerCheckCompletion

false

Whether or not to eager check for completion when a new incoming Exchange has been received. This option influences the behavior of the completionPredicate option as the Exchange being passed in changes accordingly. When false the Exchange passed in the Predicate is the aggregated Exchange which means any information you may store on the aggregated Exchange from the AggregationStrategy is available for the Predicate. When true the Exchange passed in the Predicate is the incoming Exchange, which means you can access data from the incoming Exchange.

groupExchanges

false

If enabled then Camel will group all aggregated Exchanges into a single combined org.apache.camel.impl.GroupedExchange holder class that holds all the aggregated Exchanges. And as a result only one Exchange is being sent out from the aggregator. Can be used to combine many incoming Exchanges into a single output Exchange without coding a custom AggregationStrategy yourself.

Note: this option does not support persistent repository with the aggregator. See further below for an example and more details.

ignoreInvalidCorrelationKeys

false

Whether or not to ignore correlation keys which could not be evaluated to a value. By default Camel will throw an Exception, but you can enable this option and ignore the situation instead.

closeCorrelationKeyOnCompletion

 

Whether or not too late Exchanges should be accepted or not. You can enable this to indicate that if a correlation key has already been completed, then any new exchanges with the same correlation key be denied. Camel will then throw a closedCorrelationKeyException exception. When using this option you pass in a integer which is a number for a LRUCache which keeps that last X number of closed correlation keys. You can pass in 0 or a negative value to indicate a unbounded cache. By passing in a number you are ensured that cache won't grow too big if you use a log of different correlation keys.

discardOnCompletionTimeout

false

Camel 2.5: Whether or not exchanges which complete due to a timeout should be discarded. If enabled then when a timeout occurs the aggregated message will not be sent out but dropped (discarded).

aggregationRepository

 

Allows you to plugin you own implementation of org.apache.camel.spi.AggregationRepository which keeps track of the current inflight aggregated exchanges. Camel uses by default a memory based implementation.

aggregationRepositoryRef

 

Reference to lookup a aggregationRepository in the Registry.

parallelProcessing

false

When aggregated are completed they are being send out of the aggregator. This option indicates whether or not Camel should use a thread pool with multiple threads for concurrency. If no custom thread pool has been specified then Camel creates a default pool with 10 concurrent threads.

executorService

 

If using parallelProcessing you can specify a custom thread pool to be used. In fact also if you are not using parallelProcessing this custom thread pool is used to send out aggregated exchanges as well.

executorServiceRef

 

Reference to lookup a executorService in the Registry

timeoutCheckerExecutorService

 

Camel 2.9: If using either of the completionTimeout, completionTimeoutExpression, or completionInterval options a background thread is created to check for the completion for every aggregator. Set this option to provide a custom thread pool to be used rather than creating a new thread for every aggregator.

timeoutCheckerExecutorServiceRef

 

Camel 2.9: Reference to lookup a timeoutCheckerExecutorService in the Registry

optimisticLocking

false

Camel 2.11: Turns on using optimistic locking, which requires the aggregationRepository being used, is supporting this by implementing the org.apache.camel.spi.OptimisticLockingAggregationRepository interface.

optimisticLockRetryPolicy

 

Camel 2.11.1: Allows to configure retry settings when using optimistic locking.

Exchange Properties

The following properties are set on each aggregated Exchange:

confluenceTableSmall

Header

Type

Description

CamelAggregatedSize

int

The total number of Exchanges aggregated into this combined Exchange.

CamelAggregatedCompletedBy

String

Indicator how the aggregation was completed as a value of either: predicate, size, strategy, consumer, timeout, forceCompletion or interval.

About AggregationStrategy

The AggregationStrategy is used for aggregating the old (lookup by its correlation id) and the new exchanges together into a single exchange. Possible implementations include performing some kind of combining or delta processing, such as adding line items together into an invoice or just using the newest exchange and removing old exchanges such as for state tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be provided to the aggregator.

Here are a few example AggregationStrategy implementations that should help you create your own custom strategy.

class ArrayListAggregationStrategy implements AggregationStrategy { public Exchange aggregate(Exchange oldExchange, Exchange newExchange) { Object newBody = newExchange.getIn().getBody(); ArrayList

Resequencer

The Resequencer from the EIP patterns allows you to reorganise messages based on some comparator. By default in Camel we use an Expression to create the comparator; so that you can compare by a message header or the body or a piece of a message etc.

Change in Camel 2.7

The <batch-config> and <stream-config> tags in XML DSL in the Resequencer EIP must now be configured in the top, and not in the bottom. So if you use those, then move them up just below the <resequence> EIP starts in the XML. If you are using Camel older than 2.7, then those configs should be at the bottom.

Camel supports two resequencing algorithms:

  • Batch resequencing collects messages into a batch, sorts the messages and sends them to their output.
  • Stream resequencing re-orders (continuous) message streams based on the detection of gaps between messages.

By default the Resequencer does not support duplicate messages and will only keep the last message, in case a message arrives with the same message expression. However in the batch mode you can enable it to allow duplicates.

Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages are sorted in order of the body() expression. That is messages are collected into a batch (either by a maximum number of messages per batch or using a timeout) then they are sorted in order and then sent out to their output.

Using the Fluent Builders{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java}This is equivalent to

from("direct:start") .resequence(body()).batch() .to("mock:result");

The batch-processing resequencer can be further configured via the size() and timeout() methods.

from("direct:start") .resequence(body()).batch().size(300).timeout(4000L) .to("mock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is 100 and the timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start") .resequence(body()).batch(new BatchResequencerConfig(300, 4000L)) .to("mock:result")

So the above example will reorder messages from endpoint direct:a in order of their bodies, to the endpoint mock:result.
Typically you'd use a header rather than the body to order things; or maybe a part of the body. So you could replace this expression with

resequencer(header("mySeqNo"))

for example to reorder messages using a custom sequence number in the header mySeqNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting Languages.

Using the Spring XML Extensions

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="direct:start" /> <resequence> <simple>body</simple> <to uri="mock:result" /> <!-- batch-config can be ommitted for default (batch) resequencer settings --> <batch-config batchSize="300" batchTimeout="4000" /> </resequence> </route> </camelContext>

Allow Duplicates

Available as of Camel 2.4

In the batch mode, you can now allow duplicates. In Java DSL there is a allowDuplicates() method and in Spring XML there is an allowDuplicates=true attribute on the <batch-config/> you can use to enable it.

Reverse

Available as of Camel 2.4

In the batch mode, you can now reverse the expression ordering. By default the order is based on 0..9,A..Z, which would let messages with low numbers be ordered first, and thus also also outgoing first. In some cases you want to reverse order, which is now possible.

In Java DSL there is a reverse() method and in Spring XML there is an reverse=true attribute on the <batch-config/> you can use to enable it.

Resequence JMS messages based on JMSPriority

Available as of Camel 2.4

It's now much easier to use the Resequencer to resequence messages from JMS queues based on JMSPriority. For that to work you need to use the two new options allowDuplicates and reverse.{snippet:id=e1|lang=java|url=camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsBatchResequencerJMSPriorityTest.java}Notice this is only possible in the batch mode of the Resequencer.

Ignore invalid exchanges

Available as of Camel 2.9

The Resequencer EIP will from Camel 2.9 onwards throw a CamelExchangeException if the incoming Exchange is not valid for the resequencer - ie. the expression cannot be evaluated, such as a missing header. You can use the option ignoreInvalidExchanges to ignore these exceptions which means the Resequencer will then skip the invalid Exchange.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequenceBatchIgnoreInvalidExchangesTest.java}This option is available for both batch and stream resequencer.

Reject Old Exchanges

Available as of Camel 2.11

This option can be used to prevent out of order messages from being sent regardless of the event that delivered messages downstream (capacity, timeout, etc). If enabled using rejectOld(), the Resequencer will throw a MessageRejectedException when an incoming Exchange is "older" (based on the Comparator) than the last delivered message. This provides an extra level of control with regards to delayed message ordering.

from("direct:start") .onException(MessageRejectedException.class).handled(true).to("mock:error").end() .resequence(header("seqno")).stream().timeout(1000).rejectOld() .to("mock:result");

This option is available for the stream resequencer only.

Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-ordered based on their sequence numbers given by a seqnum header using gap detection and timeouts on the level of individual messages.

Using the Fluent Builders{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java}The stream-processing resequencer can be further configured via the capacity() and timeout() methods.

from("direct:start") .resequence(header("seqnum")).stream().capacity(5000).timeout(4000L) .to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the capacity is 1000 and the timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start") .resequence(header("seqnum")).stream(new StreamResequencerConfig(5000, 4000L)) .to("mock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a message stream rather than on a fixed batch size. Gap detection in combination with timeouts removes the constraint of having to know the number of messages of a sequence (i.e. the batch size) in advance. Messages must contain a unique sequence number for which a predecessor and a successor is known. For example a message with the sequence number 3 has a predecessor message with the sequence number 2 and a successor message with the sequence number 4. The message sequence 2,3,5 has a gap because the successor of 3 is missing. The resequencer therefore has to retain message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship with respect to the sequence number) in a message stream is known, then the resequencer's timeout parameter should be set to this value. In this case it is guaranteed that all messages of a stream are delivered in correct order to the next processor. The lower the timeout value is compared to the out-of-sequence time difference the higher is the probability for out-of-sequence messages delivered by this resequencer. Large timeout values should be supported by sufficiently high capacity values. The capacity parameter is used to prevent the resequencer from running out of memory.

By default, the stream resequencer expects long sequence numbers but other sequence numbers types can be supported as well by providing a custom expression.{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/resequencer/MyFileNameExpression.java}{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/resequencer/ResequencerFileNameTest.java}or custom comparator via the comparator() method

ExpressionResultComparator<Exchange> comparator = new MyComparator(); from("direct:start") .resequence(header("seqnum")).stream().comparator(comparator) .to("mock:result");

or via a StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator(); StreamResequencerConfig config = new StreamResequencerConfig(100, 1000L, comparator); from("direct:start") .resequence(header("seqnum")).stream(config) .to("mock:result");

Using the Spring XML Extensions

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="direct:start"/> <resequence> <simple>in.header.seqnum</simple> <to uri="mock:result" /> <stream-config capacity="5000" timeout="4000"/> </resequence> </route> </camelContext>

Further Examples

For further examples of this pattern in use you could look at the batch-processing resequencer junit test case and the stream-processing resequencer junit test case

Using This Pattern

Composed Message Processor

The Composed Message Processor from the EIP patterns allows you to process a composite message by splitting it up, routing the sub-messages to appropriate destinations and the re-aggregating the responses back into a single message.

In Camel we provide two solutions

The difference is when using only a Splitter it aggregates back all the splitted messages into the same aggregation group, eg like a fork/join pattern.
Whereas using the Aggregator allows you group into multiple groups, a pattern which provides more options.

Using the splitter alone is often easier and possibly a better solution. So take a look at this first, before involving the aggregator.

Example using both Splitter and Aggregator

In this example we want to check that a multipart order can be filled. Each part of the order requires a check at a different inventory.

Error formatting macro: snippet: java.lang.NullPointerException

Using the Spring XML Extensions

<route>
  <from uri="direct:start"/>
  <split>
    <simple>body</simple>
    <choice>
      <when>
        <method bean="orderItemHelper" method="isWidget"/>
	<to uri="bean:widgetInventory"/>
      </when>
      <otherwise>
	<to uri="bean:gadgetInventory"/>
      </otherwise>
    </choice>
    <to uri="seda:aggregate"/>
  </split>
</route>

<route>
  <from uri="seda:aggregate"/>
  <aggregate strategyRef="myOrderAggregatorStrategy" completionTimeout="1000">
    <correlationExpression>
      <simple>header.orderId</simple>
    </correlationExpression>
    <to uri="mock:result"/>
  </aggregate>
</route>

To do this we split up the order using a Splitter. The Splitter then sends individual OrderItems to a Content Based Router which checks the item type. Widget items get sent for checking in the widgetInventory bean and gadgets get sent to the gadgetInventory bean. Once these OrderItems have been validated by the appropriate bean, they are sent on to the Aggregator which collects and re-assembles the validated OrderItems into an order again.

When an order is sent it contains a header with the order id. We use this fact when we aggregate, as we configure this .header("orderId") on the aggregate DSL to instruct Camel to use the header with the key orderId as correlation expression.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java

Example using only Splitter

In this example we want to split an incoming order using the Splitter eip, transform each order line, and then combine the order lines into a new order message.

Error formatting macro: snippet: java.lang.NullPointerException

Using XML

If you use XML, then the <split> tag offers the strategyRef attribute to refer to your custom AggregationStrategy

The bean with the methods to transform the order line and process the order as well:

Error formatting macro: snippet: java.lang.NullPointerException

And the AggregationStrategy we use with the Splitter eip to combine the orders back again (eg fork/join):

Error formatting macro: snippet: java.lang.NullPointerException

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Scatter-Gather

The Scatter-Gather from the EIP patterns allows you to route messages to a number of dynamically specified recipients and re-aggregate the responses back into a single message.

Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from several different vendors. We use a dynamic Recipient List to get the request for a quote to all vendors and an Aggregator to pick the best quote out of all the responses. The routes for this are defined as:

Error formatting macro: snippet: java.lang.NullPointerException

So in the first route you see that the Recipient List is looking at the listOfVendors header for the list of recipients. So, we need to send a message like

Error formatting macro: snippet: java.lang.NullPointerException

This message will be distributed to the following Endpoints: bean:vendor1, bean:vendor2, and bean:vendor3. These are all beans which look like

Error formatting macro: snippet: java.lang.NullPointerException

and are loaded up in Spring like

Error formatting macro: snippet: java.lang.NullPointerException

Each bean is loaded with a different price for beer. When the message is sent to each bean endpoint, it will arrive at the MyVendor.getQuote method. This method does a simple check whether this quote request is for beer and then sets the price of beer on the exchange for retrieval at a later step. The message is forwarded on to the next step using POJO Producing (see the @Produce annotation).

At the next step we want to take the beer quotes from all vendors and find out which one was the best (i.e. the lowest!). To do this we use an Aggregator with a custom aggregation strategy. The Aggregator needs to be able to compare only the messages from this particular quote; this is easily done by specifying a correlationExpression equal to the value of the quoteRequestId header. As shown above in the message sending snippet, we set this header to quoteRequest-1. This correlation value should be unique or you may include responses that are not part of this quote. To pick the lowest quote out of the set, we use a custom aggregation strategy like

Error formatting macro: snippet: java.lang.NullPointerException

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

Error formatting macro: snippet: java.lang.NullPointerException

You can find the full example source here:

camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml

Static Scatter-Gather Example

You can lock down which recipients are used in the Scatter-Gather by using a static Recipient List. It looks something like this

from("direct:start").multicast().to("seda:vendor1", "seda:vendor2", "seda:vendor3");

from("seda:vendor1").to("bean:vendor1").to("seda:quoteAggregator");
from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")
    .aggregate(header("quoteRequestId"), new LowestQuoteAggregationStrategy()).to("mock:result")

A full example of the static Scatter-Gather configuration can be found in the Loan Broker Example.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Routing Slip

The Routing Slip from the EIP patterns allows you to route a message consecutively through a series of processing steps where the sequence of steps is not known at design time and can vary for each message.

Options

confluenceTableSmall

Name

Default Value

Description

uriDelimiter

,

Delimiter used if the Expression returned multiple endpoints.

ignoreInvalidEndpoints

false

If an endpoint URI could not be resolved, should it be ignored.

Otherwise, Camel will throw an exception stating the endpoint URI is not valid.

cacheSize

1000

Camel 2.13.1/2.12.4: Allows to configure the cache size for the ProducerCache which caches producers for reuse in the routing slip.

The default cache size is 1000.

A value of -1 disables the use of the cache.

Example

The following route will take any messages sent to the Apache ActiveMQ queue SomeQueue and pass them into the Routing Slip pattern.

javafrom("activemq:SomeQueue") .routingSlip("aRoutingSlipHeader");

Messages will be checked for the existence of the aRoutingSlipHeader header. The value of this header should be a comma-delimited list of endpoint URIs you wish the message to be routed to. The Message will be routed in a pipeline fashion, i.e., one after the other. From Camel 2.5 the Routing Slip will set a property, Exchange.SLIP_ENDPOINT, on the Exchange which contains the current endpoint as it advanced though the slip. This allows you to know how far we have processed in the slip.

The Routing Slip will compute the slip beforehand which means, the slip is only computed once. If you need to compute the slip on-the-fly then use the Dynamic Router pattern instead.

Configuration Options

Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders{snippet:id=e3|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip/RoutingSlipTest.java}Using the Spring XML Extensions

<camelContext id="buildRoutingSlip" xmlns="http://activemq.apache.org/camel/schema/spring"> <route> <from uri="direct:c"/> <routingSlip uriDelimiter="#"> <header>aRoutingSlipHeader</header> </routingSlip> </route> </camelContext>

Ignore Invalid Endpoints

Available as of Camel 2.3

The Routing Slip now supports ignoreInvalidEndpoints which the Recipient List also supports. You can use it to skip endpoints which are invalid.

javafrom("direct:a") .routingSlip("myHeader") .ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag:

xml<route> <from uri="direct:a"/> <routingSlip ignoreInvalidEndpoints="true"/> <header>myHeader</header> </routingSlip> </route>

Then let's say the myHeader contains the following two endpoints direct:foo,xxx:bar. The first endpoint is valid and works. However the second endpoint is invalid and will just be ignored. Camel logs at INFO level, so you can see why the endpoint was invalid.

Expression Support

Available as of Camel 2.4

The Routing Slip now supports to take the expression parameter as the Recipient List does. You can tell Camel the expression that you want to use to get the routing slip.

javafrom("direct:a") .routingSlip(header("myHeader")) .ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

xml<route> <from uri="direct:a"/> <!--NOTE from Camel 2.4.0, you need to specify the expression element inside of the routingSlip element --> <routingSlip ignoreInvalidEndpoints="true"> <header>myHeader</header> </routingSlip> </route>

Further Examples

For further examples of this pattern in use you could look at the routing slip test cases.

Using This Pattern

Throttler

The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or that we don't exceed an agreed SLA with some external service.

Options

confluenceTableSmall

Name

Default Value

Description

maximumRequestsPerPeriod

 

Maximum number of requests per period to throttle. This option must be provided as a positive number. Notice, in the XML DSL, from Camel 2.8 onwards this option is configured using an Expression instead of an attribute.

timePeriodMillis

1000

The time period in milliseconds, in which the throttler will allow at most maximumRequestsPerPeriod number of messages.

asyncDelayed

false

Camel 2.4: If enabled then any messages which is delayed happens asynchronously using a scheduled thread pool.

executorServiceRef

 

Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected

true

Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should execute the task if the thread pool rejected the task.

rejectExecution

false

Camel 2.14: If this option is true, throttler throws a ThrottlerRejectExecutionException when the request rate exceeds the limit.

Examples

Using the Fluent Builders

{snippet:id=ex|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java}

So the above example will throttle messages all messages received on seda:a before being sent to mock:result ensuring that a maximum of 3 messages are sent in any 10 second window.

Note that since timePeriodMillis defaults to 1000 milliseconds, just setting the maximumRequestsPerPeriod has the effect of setting the maximum number of requests per second. So to throttle requests at 100 requests per second between two endpoints, it would look more like this...

from("seda:a").throttle(100).to("seda:b");

For further examples of this pattern in use you could look at the junit test case

Using the Spring XML Extensions

Camel 2.7.x or older

{snippet:id=example|lang=xml|url=camel/tags/camel-2.7.0/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/throttler.xml}

Camel 2.8 onwards

In Camel 2.8 onwards you must set the maximum period as an Expression as shown below where we use a Constant expression:

{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/throttler.xml}

Dynamically changing maximum requests per period

Available as of Camel 2.8
Since we use an Expression you can adjust this value at runtime, for example you can provide a header with the value. At runtime Camel evaluates the expression and converts the result to a java.lang.Long type. In the example below we use a header from the message to determine the maximum requests per period. If the header is absent, then the Throttler uses the old value. So that allows you to only provide a header if the value is to be changed:

{snippet:id=e2|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/throttler.xml}

Asynchronous delaying

Available as of Camel 2.4

You can let the Throttler use non blocking asynchronous delaying, which means Camel will use a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the caller thread to not block and be able to service other messages, etc.

from("seda:a").throttle(100).asyncDelayed().to("seda:b");

Using This Pattern

Sampling Throttler

Available as of Camel 2.1

A sampling throttler allows you to extract a sample of the exchanges from the traffic through a route.
It is configured with a sampling period during which only a single exchange is allowed to pass through. All other exchanges will be stopped.

Will by default use a sample period of 1 seconds.

Options

confluenceTableSmall

Name

Default Value

Description

messageFrequency

 

Samples the message every N'th message. You can only use either frequency or period.

samplePeriod

1

Samples the message every N'th period. You can only use either frequency or period.

units

SECOND

Time unit as an enum of java.util.concurrent.TimeUnit from the JDK.

Samples

You use this EIP with the sample DSL as show in these samples.

Using the Fluent Builders
These samples also show how you can use the different syntax to configure the sampling period:

{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SamplingThrottlerTest.java}

Using the Spring XML Extensions
And the same example in Spring XML is:

{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/samplingThrottler.xml}

And since it uses a default of 1 second you can omit this configuration in case you also want to use 1 second

{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/samplingThrottlerWithDefault.xml} Using This Pattern

See Also

Delayer

The Delayer Pattern allows you to delay the delivery of messages to some destination.

Delayer

The expression is a value in millis to wait from the current time, so the expression should just be 3000.
However you can use a long value for a fixed value to indicate the delay in millis.
See the Spring DSL samples for Delayer.

Using Delayer in Java DSL

See this ticket: https://issues.apache.org/jira/browse/CAMEL-2654

Options

confluenceTableSmall

Name

Default Value

Description

asyncDelayed

false

Camel 2.4: If enabled then delayed messages happens asynchronously using a scheduled thread pool.

executorServiceRef

 

Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected

true

Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should execute the task if the thread pool rejected the task.

Using the Fluent Builders

The example below will delay all messages received on seda:b 1 second before sending them to mock:result.

{snippet:id=ex2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java}

You can just delay things a fixed amount of time from the point at which the delayer receives the message. For example to delay things 2 seconds

delayer(2000)

The above assume that the delivery order is maintained and that the messages are delivered in delay order. If you want to reorder the messages based on delivery time, you can use the Resequencer with this pattern. For example

from("activemq:someQueue").resequencer(header("MyDeliveryTime")).delay("MyRedeliveryTime").to("activemq:aDelayedQueue");

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting Languages. For example to delay the message for the time period specified in the header, use the following syntax:

from("activemq:someQueue").delay(header("delayValue")).to("activemq:aDelayedQueue");

And to delay processing using the Simple language you can use the following DSL:

from("activemq:someQueue").delay(simple("${body.delayProperty}")).to("activemq:aDelayedQueue");

Spring DSL

The sample below demonstrates the delay in Spring DSL:

{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/delayer.xml}

For further examples of this pattern in use you could look at the junit test case

Asynchronous delaying

Available as of Camel 2.4

You can let the Delayer use non blocking asynchronous delaying, which means Camel will use a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the caller thread to not block and be able to service other messages etc.

From Java DSL

You use the asyncDelayed() to enable the async behavior.

from("activemq:queue:foo").delay(1000).asyncDelayed().to("activemq:aDelayedQueue");

From Spring XML

You use the asyncDelayed="true" attribute to enable the async behavior.

xml<route> <from uri="activemq:queue:foo"/> <delay asyncDelayed="true"> <constant>1000</constant> </delay> <to uri="activemq:aDealyedQueue"/> </route>

Creating a custom delay

You can use an expression to determine when to send a message using something like this

from("activemq:foo"). delay().method("someBean", "computeDelay"). to("activemq:bar");

then the bean would look like this...

public class SomeBean { public long computeDelay() { long delay = 0; // use java code to compute a delay value in millis return delay; } }

Using This Pattern

See Also

Load Balancer

The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a variety of different load balancing policies.

Built-in load balancing policies

Camel provides the following policies out-of-the-box:

Policy

Description

Round Robin

The exchanges are selected from in a round robin fashion. This is a well known and classic policy, which spreads the load evenly.

Random

A random endpoint is selected for each exchange.

Sticky

Sticky load balancing using an Expression to calculate a correlation key to perform the sticky load balancing; rather like jsessionid in the web or JMSXGroupID in JMS.

Topic

Topic which sends to all destinations (rather like JMS Topics)

Failover

In case of failures the exchange will be tried on the next endpoint.

Weighted Round-Robin

Camel 2.5: The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with respect to the others. In addition to the weight, endpoint selection is then further refined using round-robin distribution based on weight.

Weighted Random

Camel 2.5: The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with respect to others.In addition to the weight, endpoint selection is then further refined using random distribution based on weight.

Custom

Camel 2.8: From Camel 2.8 onwards the preferred way of using a custom Load Balancer is to use this policy, instead of using the @deprecated ref attribute.

Circuit Breaker

Camel 2.14: Implements the Circuit Breaker pattern as described in "Release it!" book.

Load balancing HTTP endpoints

If you are proxying and load balancing HTTP, then see this page for more details.

Round Robin

The round robin load balancer is not meant to work with failover, for that you should use the dedicated failover load balancer. The round robin load balancer will only change to next endpoint per message.

The round robin load balancer is stateful as it keeps state of which endpoint to use next time.

Using the Fluent Builders{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RoundRobinLoadBalanceTest.java}Using the Spring configuration

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="direct:start"/> <loadBalance> <roundRobin/> <to uri="mock:x"/> <to uri="mock:y"/> <to uri="mock:z"/> </loadBalance> </route> </camelContext>

The above example loads balance requests from direct:start to one of the available mock endpoint instances, in this case using a round robin policy.
For further examples of this pattern look at this junit test case

Failover

The failover load balancer is capable of trying the next processor in case an Exchange failed with an exception during processing.
You can constrain the failover to activate only when one exception of a list you specify occurs. If you do not specify a list any exception will cause fail over to occur. This balancer uses the same strategy for matching exceptions as the Exception Clause does for the onException.

Enable stream caching if using streams

If you use streaming then you should enable Stream caching when using the failover load balancer. This is needed so the stream can be re-read after failing over to the next processor.

Failover offers the following options:

Option

Type

Default

Description

inheritErrorHandler

boolean

true

Camel 2.3: Whether or not the Error Handler configured on the route should be used. Disable this if you want failover to transfer immediately to the next endpoint. On the other hand, if you have this option enabled, then Camel will first let the Error Handler try to process the message. The Error Handler may have been configured to redeliver and use delays between attempts. If you have enabled a number of redeliveries then Camel will try to redeliver to the same endpoint, and only fail over to the next endpoint, when the Error Handler is exhausted.

maximumFailoverAttempts

int

-1

Camel 2.3: A value to indicate after X failover attempts we should exhaust (give up). Use -1 to indicate never give up and continuously try to failover. Use 0 to never failover. And use e.g. 3 to failover at most 3 times before giving up. This option can be used whether or not roundRobin is enabled or not.

roundRobin

boolean

false

Camel 2.3: Whether or not the failover load balancer should operate in round robin mode or not. If not, then it will always start from the first endpoint when a new message is to be processed. In other words it restart from the top for every message. If round robin is enabled, then it keeps state and will continue with the next endpoint in a round robin fashion. When using round robin it will not stick to last known good endpoint, it will always pick the next endpoint to use. You can also enable sticky mode together with round robin, if so then it will pick the last known good endpoint to use when starting the load balancing (instead of using the next when starting).

stickybooleanfalseCamel 2.16: Whether or not the failover load balancer should operate in sticky mode or not. If not, then it will always start from the first endpoint when a new message is to be processed. In other words it restart from the top for every message. If sticky is enabled, then it keeps state and will continue with the last known good endpoint. You can also enable sticky mode together with round robin, if so then it will pick the last known good endpoint to use when starting the load balancing (instead of using the next when starting).

Camel 2.2 or older behavior
The current implementation of failover load balancer uses simple logic which always tries the first endpoint, and in case of an exception being thrown it tries the next in the list, and so forth. It has no state, and the next message will thus always start with the first endpoint.

Camel 2.3 onwards behavior
The failover load balancer now supports round robin mode, which allows you to failover in a round robin fashion. See the roundRobin option.

Redelivery must be enabled

In Camel 2.2 or older the failover load balancer requires you have enabled Camel Error Handler to use redelivery. In Camel 2.3 onwards this is not required as such, as you can mix and match. See the inheritErrorHandler option.

Here is a sample to failover only if a IOException related exception was thrown:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FailOverNotCatchedExceptionTest.java}You can specify multiple exceptions to failover as the option is varargs, for instance:

java// enable redelivery so failover can react errorHandler(defaultErrorHandler().maximumRedeliveries(5)); from("direct:foo"). loadBalance().failover(IOException.class, MyOtherException.class) .to("direct:a", "direct:b");

Using failover in Spring DSL

Failover can also be used from Spring DSL and you configure it as:

xml <route errorHandlerRef="myErrorHandler"> <from uri="direct:foo"/> <loadBalance> <failover> <exception>java.io.IOException</exception> <exception>com.mycompany.MyOtherException</exception> </failover> <to uri="direct:a"/> <to uri="direct:b"/> </loadBalance> </route>

Using failover in round robin mode

An example using Java DSL:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FailoverRoundRobinTest.java}And the same example using Spring XML:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/FailoverRoundRobinTest.xml}

Disabled inheritErrorHandler

You can configure inheritErrorHandler=false if you want to failover to the next endpoint as fast as possible. By disabling the Error Handler you ensure it does not intervene which allows the failover load balancer to handle failover asap. By also enabling roundRobin mode, then it will keep retrying until it success. You can then configure the maximumFailoverAttempts option to a high value to let it eventually exhaust (give up) and fail.

Weighted Round-Robin and Random Load Balancing

Available as of Camel 2.5

In many enterprise environments where server nodes of unequal processing power & performance characteristics are utilized to host services and processing endpoints, it is frequently necessary to distribute processing load based on their individual server capabilities so that some endpoints are not unfairly burdened with requests. Obviously simple round-robin or random load balancing do not alleviate problems of this nature. A Weighted Round-Robin and/or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with respect to others. You can specify this as a positive processing weight for each server. A larger number indicates that the server can handle a larger load. The weight is utilized to determine the payload distribution ratio to different processing endpoints with respect to others.

Disabled inheritErrorHandler

As of Camel 2.6, the Weighted Load balancer usage has been further simplified, there is no need to send in distributionRatio as a List<Integer>. It can be simply sent as a delimited String of integer weights separated by a delimiter of choice.

The parameters that can be used are

In Camel 2.5

Option

Type

Default

Description

roundRobin

boolean

false

The default value for round-robin is false. In the absence of this setting or parameter the load balancing algorithm used is random.

distributionRatio

List<Integer>

none

The distributionRatio is a list consisting on integer weights passed in as a parameter. The distributionRatio must match the number of endpoints and/or processors specified in the load balancer list. In Camel 2.5 if endpoints do not match ratios, then a best effort distribution is attempted.

Available In Camel 2.6

Option

Type

Default

Description

roundRobin

boolean

false

The default value for round-robin is false. In the absence of this setting or parameter the load balancing algorithm used is random.

distributionRatio

String

none

The distributionRatio is a delimited String consisting on integer weights separated by delimiters for example "2,3,5". The distributionRatio must match the number of endpoints and/or processors specified in the load balancer list.

distributionRatioDelimiter

String

,

The distributionRatioDelimiter is the delimiter used to specify the distributionRatio. If this attribute is not specified a default delimiter "," is expected as the delimiter used for specifying the distributionRatio.

Using Weighted round-robin & random load balancing

In Camel 2.5

An example using Java DSL:

javaArrayList<integer> distributionRatio = new ArrayList<integer>(); distributionRatio.add(4); distributionRatio.add(2); distributionRatio.add(1); // round-robin from("direct:start") .loadBalance().weighted(true, distributionRatio) .to("mock:x", "mock:y", "mock:z"); //random from("direct:start") .loadBalance().weighted(false, distributionRatio) .to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

xml <route> <from uri="direct:start"/> <loadBalance> <weighted roundRobin="false" distributionRatio="4 2 1"/> <to uri="mock:x"/> <to uri="mock:y"/> <to uri="mock:z"/> </loadBalance> </route>

Available In Camel 2.6

An example using Java DSL:

java// round-robin from("direct:start") .loadBalance().weighted(true, "4:2:1" distributionRatioDelimiter=":") .to("mock:x", "mock:y", "mock:z"); //random from("direct:start") .loadBalance().weighted(false, "4,2,1") .to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

xml <route> <from uri="direct:start"/> <loadBalance> <weighted roundRobin="false" distributionRatio="4-2-1" distributionRatioDelimiter="-" /> <to uri="mock:x"/> <to uri="mock:y"/> <to uri="mock:z"/> </loadBalance> </route>

Custom Load Balancer

You can use a custom load balancer (eg your own implementation) also.

An example using Java DSL:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/CustomLoadBalanceTest.java}And the same example using XML DSL:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringCustomRefLoadBalanceTest.xml}Notice in the XML DSL above we use <custom> which is only available in Camel 2.8 onwards. In older releases you would have to do as follows instead:

xml <loadBalance ref="myBalancer"> <!-- these are the endpoints to balancer --> <to uri="mock:x"/> <to uri="mock:y"/> <to uri="mock:z"/> </loadBalance>

To implement a custom load balancer you can extend some support classes such as LoadBalancerSupport and SimpleLoadBalancerSupport. The former supports the asynchronous routing engine, and the latter does not. Here is an example:{snippet:id=e2|title=Custom load balancer implementation|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/CustomLoadBalanceTest.java}

Circuit Breaker

The Circuit Breaker load balancer is a stateful pattern that monitors all calls for certain exceptions. Initially the Circuit Breaker is in closed state and passes all messages. If there are failures and the threshold is reached, it moves to open state and rejects all calls until halfOpenAfter timeout is reached. After this timeout is reached, if there is a new call, it will pass and if the result is success the Circuit Breaker will move to closed state, or to open state if there was an error.

When the circuit breaker is closed, it will throw a java.util.concurrent.RejectedExecutionException. This can then be caught to provide an alternate path for processing exchanges.

An example using Java DSL:

javafrom("direct:start") .onException(RejectedExecutionException.class) .handled(true) .to("mock:serviceUnavailable") .end()  .loadBalance() .circuitBreaker(2, 1000L, MyCustomException.class) .to("mock:service") .end();

And the same example using Spring XML:

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <route> <from uri="direct:start"/> <onException> <exception>java.util.concurrent.RejectedExecutionException</exception> <handled><constant>true</constant></handled> <to uri="mock:serviceUnavailable"/> </onException>  <loadBalance> <circuitBreaker threshold="2" halfOpenAfter="1000"> <exception>MyCustomException</exception> </circuitBreaker> <to uri="mock:service"/> </loadBalance> </route> </camelContext>

Using This Pattern

Multicast

The Multicast allows to route the same message to a number of endpoints and process them in a different way. The main difference between the Multicast and Splitter is that Splitter will split the message into several pieces but the Multicast will not modify the request message.

Options

confluenceTableSmall

Name

Default Value

Description

strategyRef

 

Refers to an AggregationStrategy to be used to assemble the replies from the multicasts, into a single outgoing message from the Multicast. By default Camel will use the last reply as the outgoing message. From Camel 2.12 onwards you can also use a POJO as the AggregationStrategy, see the Aggregate page for more details. If an exception is thrown from the aggregate method in the AggregationStrategy, then by default, that exception is not handled by the error handler. The error handler can be enabled to react if enabling the shareUnitOfWork option.

strategyMethodName

 

Camel 2.12: This option can be used to explicit declare the method name to use, when using POJOs as the AggregationStrategy. See the Aggregate page for more details.

strategyMethodAllowNull

false

Camel 2.12: If this option is false then the aggregate method is not used if there was no data to enrich. If this option is true then null values is used as the oldExchange (when no data to enrich), when using POJOs as the AggregationStrategy. See the Aggregate page for more details.

parallelProcessing

false

If enabled then sending messages to the multicasts occurs concurrently. Note the caller thread will still wait until all messages has been fully processed, before it continues. Its only the sending and processing the replies from the multicasts which happens concurrently.

 

parallelAggregate

false

Camel 2.14: If enabled then the aggregate method on AggregationStrategy can be called concurrently. Notice that this would require the implementation of AggregationStrategy to be implemented as thread-safe. By default this is false meaning that Camel synchronizes the call to the aggregate method. Though in some use-cases this can be used to archive higher performance when the AggregationStrategy is implemented as thread-safe.

executorServiceRef

 

Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then parallel processing is automatic implied, and you do not have to enable that option as well.

stopOnException

false

Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If disable, then Camel will send the message to all multicasts regardless if one of them failed. You can deal with exceptions in the AggregationStrategy class where you have full control how to handle that.

streaming

false

If enabled then Camel will process replies out-of-order, eg in the order they come back. If disabled, Camel will process replies in the same order as multicasted.

timeout

 

Camel 2.5: Sets a total timeout specified in millis. If the Multicast hasn't been able to send and process all replies within the given timeframe, then the timeout triggers and the Multicast breaks out and continues. Notice if you provide a TimeoutAwareAggregationStrategy then the timeout method is invoked before breaking out. If the timeout is reached with running tasks still remaining, certain tasks for which it is difficult for Camel to shut down in a graceful manner may continue to run. So use this option with a bit of care. We may be able to improve this functionality in future Camel releases.

onPrepareRef

 

Camel 2.8: Refers to a custom Processor to prepare the copy of the Exchange each multicast will receive. This allows you to do any custom logic, such as deep-cloning the message payload if that's needed etc.

shareUnitOfWork

false

Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more details.

Example

The following example shows how to take a request from the direct:a endpoint , then multicast these request to direct:x, direct:y, direct:z.

Using the Fluent Builders{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MulticastTest.java}By default Multicast invokes each endpoint sequentially. If parallel processing is desired, simply use

from("direct:a").multicast().parallelProcessing().to("direct:x", "direct:y", "direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating all reply messages. The default is to only use the latest reply message and discard any earlier replies. The aggregation strategy is configurable:

from("direct:start") .multicast(new MyAggregationStrategy()) .parallelProcessing().timeout(500).to("direct:a", "direct:b", "direct:c") .end() .to("mock:result");

Stop processing in case of exception

Available as of Camel 2.1

The Multicast will by default continue to process the entire Exchange even in case one of the multicasted messages will thrown an exception during routing.
For example if you want to multicast to 3 destinations and the 2nd destination fails by an exception. What Camel does by default is to process the remainder destinations. You have the chance to remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error handler handle it. You can do this in Camel 2.1 by specifying that it should stop in case of an exception occurred. This is done by the stopOnException option as shown below:

from("direct:start") .multicast() .stopOnException().to("direct:foo", "direct:bar", "direct:baz") .end() .to("mock:result"); from("direct:foo").to("mock:foo"); from("direct:bar").process(new MyProcessor()).to("mock:bar"); from("direct:baz").to("mock:baz");

And using XML DSL you specify it as follows:

xml <route> <from uri="direct:start"/> <multicast stopOnException="true"> <to uri="direct:foo"/> <to uri="direct:bar"/> <to uri="direct:baz"/> </multicast> <to uri="mock:result"/> </route> <route> <from uri="direct:foo"/> <to uri="mock:foo"/> </route> <route> <from uri="direct:bar"/> <process ref="myProcessor"/> <to uri="mock:bar"/> </route> <route> <from uri="direct:baz"/> <to uri="mock:baz"/> </route>

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

The Multicast will copy the source Exchange and multicast each copy. However the copy is a shallow copy, so in case you have mutateable message bodies, then any changes will be visible by the other copied messages. If you want to use a deep clone copy then you need to use a custom onPrepare which allows you to do this using the Processor interface.

Notice the onPrepare can be used for any kind of custom logic which you would like to execute before the Exchange is being multicasted.

Design for immutable

Its best practice to design for immutable objects.

For example if you have a mutable message body as this Animal class:{snippet:id=e1|lang=java|title=Animal|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/Animal.java}Then we can create a deep clone processor which clones the message body:{snippet:id=e1|lang=java|title=AnimalDeepClonePrepare|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/AnimalDeepClonePrepare.java}Then we can use the AnimalDeepClonePrepare class in the Multicast route using the onPrepare option as shown:{snippet:id=e1|lang=java|title=Multicast using onPrepare|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MulticastOnPrepareTest.java}And the same example in XML DSL{snippet:id=e1|lang=xml|title=Multicast using onPrepare|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/MulticastOnPrepareTest.xml}Notice the onPrepare option is also available on other EIPs such as Splitter, Recipient List, and Wire Tap.

Using This Pattern

Loop

The Loop allows for processing a message a number of times, possibly in a different way for each iteration. Useful mostly during testing.

Default mode

Notice by default the loop uses the same exchange throughout the looping. So the result from the previous iteration will be used for the next (eg Pipes and Filters). From Camel 2.8 onwards you can enable copy mode instead. See the options table for more details.

Options

confluenceTableSmall 

Name

Default Value

Description

copy

false

Camel 2.8: Whether or not copy mode is used. If false then the same Exchange will be used for each iteration. So the result from the previous iteration will be visible for the next iteration. Instead you can enable copy mode, and then each iteration restarts with a fresh copy of the input Exchange.

doWhile Camel 2.17: Enables the while loop that loops until the predicate evaluates to false or null.

Exchange properties

For each iteration two properties are set on the Exchange. Processors can rely on these properties to process the Message in different ways.

Property

Description

CamelLoopSize

Total number of loops. This is not available if running the loop in while loop mode.

CamelLoopIndex

Index of the current iteration (0 based)

Examples

The following example shows how to take a request from the direct:x endpoint, then send the message repetitively to mock:result. The number of times the message is sent is either passed as an argument to loop(), or determined at runtime by evaluating an expression. The expression must evaluate to an int, otherwise a RuntimeCamelException is thrown.

Using the Fluent Builders

Pass loop count as an argument{snippet:id=ex1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java}Use expression to determine loop count{snippet:id=ex2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java}Use expression to determine loop count{snippet:id=ex3|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java}Using the Spring XML Extensions

Pass loop count as an argument{snippet:id=ex1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/loop.xml}Use expression to determine loop count{snippet:id=ex2|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/loop.xml}For further examples of this pattern in use you could look at one of the junit test case

Using copy mode

Available as of Camel 2.8

Now suppose we send a message to "direct:start" endpoint containing the letter A.
The output of processing this route will be that, each "mock:loop" endpoint will receive "AB" as message.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopCopyTest.java}However if we do not enable copy mode then "mock:loop" will receive "AB", "ABB", "ABBB", etc. messages.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopNoCopyTest.java}The equivalent example in XML DSL in copy mode is as follows:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringLoopCopyTest.xml}

Using while mode

Available as of Camel 2.17

The loop can act like a while loop that loops until the expression evaluates to false or null.

For example the route below loops while the length of the message body is 5 or less characters. Notice that the DSL uses loopDoWhile.

from("direct:start") .loopDoWhile(simple("${body.length} <= 5")) .to("mock:loop") .transform(body().append("A")) .end() .to("mock:result");

And the same example in XML:

xml <route> <from uri="direct:start"/> <loop doWhile="true"> <simple>${body.length} &lt;= 5</simple> <to uri="mock:loop"/> <transform> <simple>A${body}</simple> </transform> </loop> <to uri="mock:result"/> </route>

Notice in XML that the while loop is turned on using the doWhile attribute.

 

Using This Pattern

Message Transformation

Error rendering macro 'include'

null

Content Filter

Camel supports the Content Filter from the EIP patterns using one of the following mechanisms in the routing logic to transform content from the inbound message.

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or one of the supported Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

Error formatting macro: snippet: java.lang.NullPointerException

In this example we add our own Processor

Error formatting macro: snippet: java.lang.NullPointerException

For further examples of this pattern in use you could look at one of the JUnit tests

Using Spring XML

<route>
  <from uri="activemq:Input"/>
  <bean ref="myBeanName" method="doTransform"/>
  <to uri="activemq:Output"/>
</route>

You can also use XPath to filter out part of the message you are interested in:

<route>
  <from uri="activemq:Input"/>
  <setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath></setBody>
  <to uri="activemq:Output"/>
</route> 

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Claim Check

The Claim Check from the EIP patterns allows you to replace message content with a claim check (a unique key), which can be used to retrieve the message content at a later time. The message content is stored temporarily in a persistent store like a database or file system. This pattern is very useful when message content is very large (thus it would be expensive to send around) and not all components require all information.

It can also be useful in situations where you cannot trust the information with an outside party; in this case, you can use the Claim Check to hide the sensitive portions of data.

Example

In this example we want to replace a message body with a claim check, and restore the body at a later step.

Using the Fluent Builders

{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java}

Using the Spring XML Extensions

xml <route> <from uri="direct:start"/> <pipeline> <to uri="bean:checkLuggage"/> <to uri="mock:testCheckpoint"/> <to uri="bean:dataEnricher"/> <to uri="mock:result"/> </pipeline> </route>

The example route is pretty simple - its just a Pipeline. In a real application you would have some other steps where the mock:testCheckpoint endpoint is in the example.

The message is first sent to the checkLuggage bean which looks like

{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java}

This bean stores the message body into the data store, using the custId as the claim check. In this example, we're just using a HashMap to store the message body; in a real application you would use a database or file system, etc. Next the claim check is added as a message header for use later. Finally we remove the body from the message and pass it down the pipeline.

The next step in the pipeline is the mock:testCheckpoint endpoint which is just used to check that the message body is removed, claim check added, etc.

To add the message body back into the message, we use the dataEnricher bean which looks like

{snippet:id=e3|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java}

This bean queries the data store using the claim check as the key and then adds the data back into the message. The message body is then removed from the data store and finally the claim check is removed. Now the message is back to what we started with!

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

Using This Pattern

Normalizer

Camel supports the Normalizer from the EIP patterns by using a Message Router in front of a number of Message Translator instances.

Example

This example shows a Message Normalizer that converts two types of XML messages into a common format. Messages in this common format are then filtered.

Using the Fluent Builders

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/NormalizerTest.java}

In this case we're using a Java bean as the normalizer. The class looks like this

{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MyNormalizer.java}

Using the Spring XML Extensions

The same example in the Spring DSL

{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/normalizer.xml}

See Also

Using This Pattern

Sort

Sort can be used to sort a message. Imagine you consume text files and before processing each file you want to be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or uses the string representation. You can provide your own comparator, and even an expression to return the value to be sorted. Sort requires the value returned from the expression evaluation is convertible to java.util.List as this is required by the JDK sort operation.

Options

Name

Default Value

Description

comparatorRef

 

Refers to a custom java.util.Comparator to use for sorting the message body. Camel will by default use a comparator which does a A..Z sorting.

Using from Java DSL

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

from("file://inbox").sort(body().tokenize("\n")).to("bean:MyServiceBean.processLine");

You can pass in your own comparator as a 2nd argument:

from("file://inbox").sort(body().tokenize("\n"), new MyReverseComparator()).to("bean:MyServiceBean.processLine");

Using from Spring DSL

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

Camel 2.7 or better
<route>
  <from uri="file://inbox"/>
  <sort>
    <simple>body</simple>
  </sort>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>
Camel 2.6 or older
<route>
  <from uri="file://inbox"/>
  <sort>
    <expression>
      <simple>body</simple>
    </expression>
  </sort>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>

And to use our own comparator we can refer to it as a spring bean:

Camel 2.7 or better
<route>
  <from uri="file://inbox"/>
  <sort comparatorRef="myReverseComparator">
    <simple>body</simple>
  </sort>
  <beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>
Camel 2.6 or older
<route>
  <from uri="file://inbox"/>
  <sort comparatorRef="myReverseComparator">
    <expression>
      <simple>body</simple>
    </expression>
  </sort>
  <beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Besides <simple>, you can supply an expression using any language you like, so long as it returns a list.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Messaging Endpoints

Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Message Translator pattern or the Type Converter module.

Example

The following example demonstrates the use of a Bean component to map between two messaging system

Using the Fluent Builders

from("activemq:foo")
	.beanRef("transformerBean", "transform")
	.to("jms:bar");

 

Using the Spring XML Extensions

<route>
	<from uri="activemq:foo"/>
	<bean ref="transformerBean" method="transform" />
	<to uri="jms:bar"/>
</route>

See also

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer model is event based (i.e. asynchronous) as this means that the Camel container can then manage pooling, threading and concurrency for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing the Processor interface which is invoked by the Message Endpoint when a Message is available for processing.

Example

The following demonstrates a Processor defined in the Camel  Registry which is invoked when an event occurs from a JMS queue


Using the Fluent Builders

from("jms:queue:foo")
	.processRef("processor");

 

Using the Spring XML Extensions

<route>
	<from uri="jms:queue:foo"/>
	<to uri="processor"/>
</route>

 

For more details see

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Polling Consumer

Camel supports implementing the Polling Consumer from the EIP patterns using the PollingConsumer interface which can be created via the Endpoint.createPollingConsumer() method.

In Java:

javaEndpoint endpoint = context.getEndpoint("activemq:my.queue"); PollingConsumer consumer = endpoint.createPollingConsumer(); Exchange exchange = consumer.receive();

The ConsumerTemplate (discussed below) is also available.

There are three main polling methods on PollingConsumer

Method name

Description

receive()

Waits until a message is available and then returns it; potentially blocking forever

receive(long)

Attempts to receive a message exchange, waiting up to the given timeout and returning null if no message exchange could be received within the time available

receiveNoWait()

Attempts to receive a message exchange immediately without waiting and returning null if a message exchange is not available yet

EventDrivenPollingConsumer Options

The EventDrivePollingConsumer (the default implementation) supports the following options:

confluenceTableSmall

Option

Default

Description

pollingConsumerQueueSize

1000

Camel 2.14/2.13.1/2.12.4: The queue size for the internal hand-off queue between the polling consumer, and producers sending data into the queue.

pollingConsumerBlockWhenFull

true

Camel 2.14/2.13.1/2.12/4: Whether to block any producer if the internal queue is full.

pollingConsumerBlockTimeout0Camel 2.16: To use a timeout (in milliseconds) when the producer is blocked if the internal queue is full. If the value is 0 or negative then no timeout is in use. If a timeout is triggered then a ExchangeTimedOutException is thrown.

Notice that some Camel Components has their own implementation of PollingConsumer and therefore do not support the options above.

You can configure these options in endpoints URIs, such as shown below:

javaEndpoint endpoint = context.getEndpoint("file:inbox?pollingConsumerQueueSize=50"); PollingConsumer consumer = endpoint.createPollingConsumer(); Exchange exchange = consumer.receive(5000);

ConsumerTemplate

The ConsumerTemplate is a template much like Spring's JmsTemplate or JdbcTemplate supporting the Polling Consumer EIP. With the template you can consume Exchanges from an Endpoint. The template supports the three operations listed above. However, it also includes convenient methods for returning the body, etc consumeBody.

Example:

Exchange exchange = consumerTemplate.receive("activemq:my.queue");

Or to extract and get the body you can do:

Object body = consumerTemplate.receiveBody("activemq:my.queue");

And you can provide the body type as a parameter and have it returned as the type:

String body = consumerTemplate.receiveBody("activemq:my.queue", String.class);

You get hold of a ConsumerTemplate from the CamelContext with the createConsumerTemplate operation:

ConsumerTemplate consumer = context.createConsumerTemplate();

Using ConsumerTemplate with Spring DSL

With the Spring DSL we can declare the consumer in the CamelContext with the consumerTemplate tag, just like the ProducerTemplate. The example below illustrates this:{snippet:id=e1|lang=xml|url=camel/components/camel-spring/src/test/resources/org/apache/camel/spring/SpringConsumerTemplateTest-context.xml}Then we can get leverage Spring to inject the ConsumerTemplate in our java class. The code below is part of an unit test but it shows how the consumer and producer can work together.{snippet:id=e1|lang=java|url=camel/components/camel-spring/src/test/java/org/apache/camel/spring/SpringConsumerTemplateTest.java}

Timer Based Polling Consumer

In this sample we use a Timer to schedule a route to be started every 5th second and invoke our bean MyCoolBean where we implement the business logic for the Polling Consumer. Here we want to consume all messages from a JMS queue, process the message and send them to the next queue.

First we setup our route as:{snippet:id=e1|lang=java|url=camel/tags/camel-2.6.0/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsTimerBasedPollingConsumerTest.java}And then we have out logic in our bean:{snippet:id=e2|lang=java|url=camel/tags/camel-2.6.0/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsTimerBasedPollingConsumerTest.java}

Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and push them through the Camel processing routes. That is to say externally from the client the endpoint appears to use an Event Driven Consumer but internally a scheduled poll is used to monitor some kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the ScheduledPollConsumer base class which makes it simpler to implement this pattern. There is also the Quartz Component which provides scheduled delivery of messages using the Quartz enterprise scheduler.

For more details see:

ScheduledPollConsumer Options

The ScheduledPollConsumer supports the following options:

confluenceTableSmall

Option

Default

Description

backoffErrorThreshold

0

Camel 2.12: The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.

backoffIdleThreshold

0

Camel 2.12: The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.

backoffMultiplier

0

Camel 2.12: To let the scheduled polling consumer back-off if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.

delay

500

Milliseconds before the next poll.

greedy

false

Camel 2.10.6/2.11.1: If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.

initialDelay

1000

Milliseconds before the first poll starts.

pollStrategy

 

A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange has been created and routed in Camel. In other words the error occurred while the polling was gathering information, for instance access to a file network failed so Camel cannot access it to scan for files.

The default implementation will log the caused exception at WARN level and ignore it.

runLoggingLevel

TRACE

Camel 2.8: The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.

scheduledExecutorService

null

Camel 2.10: Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool. This option allows you to share a thread pool among multiple consumers.

scheduler

null

Camel 2.12: Allow to plugin a custom org.apache.camel.spi.ScheduledPollConsumerScheduler to use as the scheduler for firing when the polling consumer runs. The default implementation uses the ScheduledExecutorService and there is a Quartz2, and Spring based which supports CRON expressions. Notice: If using a custom scheduler then the options for initialDelay, useFixedDelay, timeUnit and scheduledExecutorService may not be in use. Use the text quartz2 to refer to use the Quartz2 scheduler; and use the text spring to use the Spring based; and use the text #myScheduler to refer to a custom scheduler by its id in the Registry.

See Quartz2 page for an example.

scheduler.xxx

null

Camel 2.12: To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.

sendEmptyMessageWhenIdle

false

Camel 2.9: If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.

startScheduler

true

Whether the scheduler should be auto started.

timeUnit

TimeUnit.MILLISECONDS

Time unit for initialDelay and delay options.

useFixedDelay

 

Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details. In Camel 2.7.x or older the default value is false.

From Camel 2.8: the default value is true.

Using backoff to Let the Scheduler be Less Aggressive

Available as of Camel 2.12

The scheduled Polling Consumer is by default static by using the same poll frequency whether or not there is messages to pickup or not.

From Camel 2.12: you can configure the scheduled Polling Consumer to be more dynamic by using backoff. This allows the scheduler to skip N number of polls when it becomes idle, or there has been X number of errors in a row. See more details in the table above for the backoffXXX options.

For example to let a FTP consumer back-off if its becoming idle for a while you can do:

javafrom("ftp://myserver?username=foo&passowrd=secret?delete=true&delay=5s&backoffMultiplier=6&backoffIdleThreshold=5") .to("bean:processFile");

In this example, the FTP consumer will poll for new FTP files every 5th second. But if it has been idle for 5 attempts in a row, then it will back-off using a multiplier of 6, which means it will now poll every 5 x 6 = 30th second instead. When the consumer eventually pickup a file, then the back-off will reset, and the consumer will go back and poll every 5th second again.

Camel will log at DEBUG level using org.apache.camel.impl.ScheduledPollConsumer when back-off is kicking-in.

About Error Handling and Scheduled Polling Consumers

ScheduledPollConsumer is scheduled based and its run method is invoked periodically based on schedule settings. But errors can also occur when a poll is being executed. For instance if Camel should poll a file network, and this network resource is not available then a java.io.IOException could occur. As this error happens before any Exchange has been created and prepared for routing, then the regular Error handling in Camel does not apply. So what does the consumer do then? Well the exception is propagated back to the run method where its handled. Camel will by default log the exception at WARN level and then ignore it. At next schedule the error could have been resolved and thus being able to poll the endpoint successfully.

Using a Custom Scheduler

Available as of Camel 2.12:

The SPI interface org.apache.camel.spi.ScheduledPollConsumerScheduler allows to implement a custom scheduler to control when the Polling Consumer runs. The default implementation is based on the JDKs ScheduledExecutorService with a single thread in the thread pool. There is a CRON based implementation in the Quartz2, and Spring components.

For an example of developing and using a custom scheduler, see the unit test org.apache.camel.component.file.FileConsumerCustomSchedulerTest from the source code in camel-core.

Error Handling When Using PollingConsumerPollStrategy

org.apache.camel.PollingConsumerPollStrategy is a pluggable strategy that you can configure on the ScheduledPollConsumer. The default implementation org.apache.camel.impl.DefaultPollingConsumerPollStrategy will log the caused exception at WARN level and then ignore this issue.

The strategy interface provides the following three methods:

  • begin
    • void begin(Consumer consumer, Endpoint endpoint)
  • begin (Camel 2.3)
    • boolean begin(Consumer consumer, Endpoint endpoint)
  • commit
    • void commit(Consumer consumer, Endpoint endpoint)
  • commit (Camel 2.6)
    • void commit(Consumer consumer, Endpoint endpoint, int polledMessages)
  • rollback
    • boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter, Exception e) throws Exception

In Camel 2.3: the begin method returns a boolean which indicates whether or not to skipping polling. So you can implement your custom logic and return false if you do not want to poll this time.

In Camel 2.6: the commit method has an additional parameter containing the number of message that was actually polled. For example if there was no messages polled, the value would be zero, and you can react accordingly.

The most interesting is the rollback as it allows you do handle the caused exception and decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer we can implement the PollingConsumerPollStrategy method and put the retry logic in the rollback method. Lets just retry up till three times:

javapublic boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter, Exception e) throws Exception { if (retryCounter < 3) { // return true to tell Camel that it should retry the poll immediately return true; } // okay we give up do not retry anymore return false; }

Notice that we are given the Consumer as a parameter. We could use this to restart the consumer as we can invoke stop and start:

java// error occurred lets restart the consumer, that could maybe resolve the issue consumer.stop(); consumer.start();

Note: if you implement the begin operation make sure to avoid throwing exceptions as in such a case the poll operation is not invoked and Camel will invoke the rollback directly.

Configuring an Endpoint to Use PollingConsumerPollStrategy

To configure an Endpoint to use a custom PollingConsumerPollStrategy you use the option pollStrategy. For example in the file consumer below we want to use our custom strategy defined in the Registry with the bean id myPoll:

from("file://inbox/?pollStrategy=#myPoll") .to("activemq:queue:inbox")

Using This Pattern

See Also

Competing Consumers

Camel supports the Competing Consumers from the EIP patterns using a few different components.

You can use the following components to implement competing consumers:-

  • Seda for SEDA based concurrent processing using a thread pool
  • JMS for distributed SEDA based concurrent processing with queues which support reliable load balancing, failover and clustering.

Enabling Competing Consumers with JMS

To enable Competing Consumers you just need to set the concurrentConsumers property on the JMS endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5").bean(SomeBean.class);

or in Spring DSL

<route>
  <from uri="jms:MyQueue?concurrentConsumers=5"/>
  <to uri="bean:someBean"/>
</route>

Or just run multiple JVMs of any ActiveMQ or JMS route (smile)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

You can use a component like JMS with selectors to implement a Selective Consumer as the Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher itself and then use a Content Based Router as the Message Dispatcher.

 

Example

The following example demonstrates Message Dispatcher pattern using the Competing Consumers functionality of the JMS component to offload messages to a Content Based Router and custom Processors registered in the Camel Registry running in separate threads from originating consumer.

 

Using the Fluent Builders

from("jms:queue:foo?concurrentConsumers=5")
	.threads(5)
	.choice()
		.when(header("type").isEqualTo("A")) 
			.processRef("messageDispatchProcessorA")
		.when(header("type").isEqualTo("B"))
			.processRef("messageDispatchProcessorB")
		.when(header("type").isEqualTo("C"))
			.processRef("messageDispatchProcessorC")		
		.otherwise()
			.to("jms:queue:invalidMessageType");

 

Using the Spring XML Extensions

<route>
	<from uri="jms:queue:foo?concurrentConsumers=5"/>
	<threads poolSize="5">
		<choice>
			<when>
				<simple>${in.header.type} == 'A'</simple>
				<to ref="messageDispatchProcessorA"/>
			</when>
			<when>
				<simple>${in.header.type} == 'B'</simple>
				<to ref="messageDispatchProcessorB"/>
			</when>
			<when>
				<simple>${in.header.type} == 'C'</simple>
				<to ref="messageDispatchProcessorC"/>
			</when>
			<otherwise>
				<to uri="jms:queue:invalidMessageType"/>
		</choice>
	</threads>
</route>

See Also

 

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when creating your consumer. For example when using JMS you can specify a selector parameter so that the message broker will only deliver messages matching your criteria.

The other approach is to use a Message Filter which is applied; then if the filter matches the message your consumer is invoked as shown in the following example

Using the Fluent Builders

Error formatting macro: snippet: java.lang.NullPointerException

Using the Spring XML Extensions

Error formatting macro: snippet: java.lang.NullPointerException

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the JMS component which supports publish & subscribe using Topics with support for non-durable and durable subscribers.

Another alternative is to combine the Message Dispatcher or Content Based Router with File or JPA components for durable subscribers then something like Seda for non-durable.

Here is a simple example of creating durable subscribers to a JMS topic

Using the Fluent Builders

from("direct:start").to("activemq:topic:foo");

from("activemq:topic:foo?clientId=1&durableSubscriptionName=bar1").to("mock:result1");

from("activemq:topic:foo?clientId=2&durableSubscriptionName=bar2").to("mock:result2");

Using the Spring XML Extensions

<route>
    <from uri="direct:start"/>
    <to uri="activemq:topic:foo"/>
</route>

<route>
    <from uri="activemq:topic:foo?clientId=1&durableSubscriptionName=bar1"/>
    <to uri="mock:result1"/>
</route>

<route>
    <from uri="activemq:topic:foo?clientId=2&durableSubscriptionName=bar2"/>
    <to uri="mock:result2"/>
</route>

Here is another example of JMS durable subscribers, but this time using virtual topics (recommended by AMQ over durable subscriptions)

Using the Fluent Builders

from("direct:start").to("activemq:topic:VirtualTopic.foo");

from("activemq:queue:Consumer.1.VirtualTopic.foo").to("mock:result1");

from("activemq:queue:Consumer.2.VirtualTopic.foo").to("mock:result2");

Using the Spring XML Extensions

<route>
    <from uri="direct:start"/>
    <to uri="activemq:topic:VirtualTopic.foo"/>
</route>

<route>
    <from uri="activemq:queue:Consumer.1.VirtualTopic.foo"/>
    <to uri="mock:result1"/>
</route>

<route>
    <from uri="activemq:queue:Consumer.2.VirtualTopic.foo"/>
    <to uri="mock:result2"/>
</route>

See Also

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Idempotent Consumer

The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression to calculate a unique message ID string for a given message exchange; this ID can then be looked up in the IdempotentRepository to see if it has been seen before; if it has the message is consumed; if its not then the message is processed and the ID is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out duplicates.

Camel will add the message id eagerly to the repository to detect duplication also for Exchanges currently in progress.
On completion Camel will remove the message id from the repository if the Exchange failed, otherwise it stays there.

Camel provides the following Idempotent Consumer implementations:

Options

The Idempotent Consumer has the following options:

Option

Default

Description

eager

true

Eager controls whether Camel adds the message to the repository before or after the exchange has been processed. If enabled before then Camel will be able to detect duplicate messages even when messages are currently in progress. By disabling Camel will only detect duplicates when a message has successfully been processed.

messageIdRepositoryRef

null

A reference to a IdempotentRepository to lookup in the registry. This option is mandatory when using XML DSL.

skipDuplicate

true

Camel 2.8: Sets whether to skip duplicate messages. If set to false then the message will be continued. However the Exchange has been marked as a duplicate by having the Exchange.DUPLICATE_MESSAG exchange property set to a Boolean.TRUE value.

removeOnFailure

true

Camel 2.9: Sets whether to remove the id of an Exchange that failed.

completionEagerfalse

Camel 2.16: Sets whether to complete the idempotent consumer eager or when the exchange is done.

If this option is true to complete eager, then the idempotent consumer will trigger its completion when the exchange reached the end of the block of the idempotent consumer pattern. So if the exchange is continued routed after the block ends, then whatever happens there does not affect the state.

If this option is false (default) to not complete eager, then the idempotent consumer will complete when the exchange is done being routed. So if the exchange is continued routed after the block ends, then whatever happens there also affect the state. For example if the exchange failed due to an exception, then the state of the idempotent consumer will be a rollback.

Using the Fluent Builders

The following example will use the header myMessageId to filter out duplicates{snippet:id=idempotent|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java}The above example will use an in-memory based MessageIdRepository which can easily run out of memory and doesn't work in a clustered environment. So you might prefer to use the JPA based implementation which uses a database to store the message IDs which have been processed{snippet:id=idempotent|lang=java|url=camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java}In the above example we are using the header messageId to filter out duplicates and using the collection myProcessorName to indicate the Message ID Repository to use. This name is important as you could process the same message by many different processors; so each may require its own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test case

Spring XML example

The following example will use the header myMessageId to filter out duplicates{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringIdempotentConsumerTest.xml}

How to handle duplicate messages in the route

Available as of Camel 2.8

You can now set the skipDuplicate option to false which instructs the idempotent consumer to route duplicate messages as well. However the duplicate message has been marked as duplicate by having a property on the Exchange set to true. We can leverage this fact by using a Content Based Router or Message Filter to detect this and handle duplicate messages.

For example in the following example we use the Message Filter to send the message to a duplicate endpoint, and then stop continue routing that message.{snippet:id=e1|lang=java|title=Filter duplicate messages|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java}The sample example in XML DSL would be:{snippet:id=e1|lang=xml|title=Filter duplicate messages|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringIdempotentConsumerNoSkipDuplicateFilterTest.xml}

How to handle duplicate message in a clustered environment with a data grid

Available as of Camel 2.8

If you have running Camel in a clustered environment, a in memory idempotent repository doesn't work (see above). You can setup either a central database or use the idempotent consumer implementation based on the Hazelcast data grid. Hazelcast finds the nodes over multicast (which is default - configure Hazelcast for tcp-ip) and creates automatically a map based repository:

java HazelcastIdempotentRepository idempotentRepo = new HazelcastIdempotentRepository("myrepo"); from("direct:in").idempotentConsumer(header("messageId"), idempotentRepo).to("mock:out");

You have to define how long the repository should hold each message id (default is to delete it never). To avoid that you run out of memory you should create an eviction strategy based on the Hazelcast configuration. For additional information see camel-hazelcast.

See this little tutorial, how setup such an idempotent repository on two cluster nodes using Apache Karaf.

Available as of Camel 2.13.0

Another option for using Idempotent Consumer in a clustered environment is Infinispan. Infinispan is a data grid with replication and distribution clustering support. For additional information see camel-infinispan.

Using This Pattern

Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using spring transactions.

Transaction Oriented Endpoints like JMS support using a transaction for both inbound and outbound message exchanges. Endpoints that support transactions will participate in the current transaction context that they are called from.

Configuration of Redelivery

The redelivery in transacted mode is not handled by Camel but by the backing system (the transaction manager). In such cases you should resort to the backing system how to configure the redelivery.

You should use the SpringRouteBuilder to setup the routes since you will need to setup the spring context with the TransactionTemplates that will define the transaction manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring PlatformTransactionManager. In the case of the JMS component, this can be done by looking it up in the spring context.

You first define needed object in the spring configuration.

xml <bean id="jmsTransactionManager" class="org.springframework.jms.connection.JmsTransactionManager"> <property name="connectionFactory" ref="jmsConnectionFactory" /> </bean> <bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory"> <property name="brokerURL" value="tcp://localhost:61616"/> </bean>

Then you look them up and use them to create the JmsComponent.

java PlatformTransactionManager transactionManager = (PlatformTransactionManager) spring.getBean("jmsTransactionManager"); ConnectionFactory connectionFactory = (ConnectionFactory) spring.getBean("jmsConnectionFactory"); JmsComponent component = JmsComponent.jmsComponentTransacted(connectionFactory, transactionManager); component.getConfiguration().setConcurrentConsumers(1); ctx.addComponent("activemq", component);

Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you do not want your outbound endpoint to enlist in the same transaction as your inbound endpoint? The solution is to add a Transaction Policy to the processing route. You first have to define transaction policies that you will be using. The policies use a spring TransactionTemplate under the covers for declaring the transaction demarcation to use. So you will need to add something like the following to your spring xml:

xml <bean id="PROPAGATION_REQUIRED" class="org.apache.camel.spring.spi.SpringTransactionPolicy"> <property name="transactionManager" ref="jmsTransactionManager"/> </bean> <bean id="PROPAGATION_REQUIRES_NEW" class="org.apache.camel.spring.spi.SpringTransactionPolicy"> <property name="transactionManager" ref="jmsTransactionManager"/> <property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/> </bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects for each of the templates.

javapublic void configure() { ... Policy requried = bean(SpringTransactionPolicy.class, "PROPAGATION_REQUIRED")); Policy requirenew = bean(SpringTransactionPolicy.class, "PROPAGATION_REQUIRES_NEW")); ... }

Once created, you can use the Policy objects in your processing routes:

java // Send to bar in a new transaction from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar"); // Send to bar without a transaction. from("activemq:queue:foo").policy(notsupported ).to("activemq:queue:bar");

OSGi Blueprint

If you are using OSGi Blueprint then you most likely have to explicit declare a policy and refer to the policy from the transacted in the route.

xml <bean id="required" class="org.apache.camel.spring.spi.SpringTransactionPolicy"> <property name="transactionManager" ref="jmsTransactionManager"/> <property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/> </bean>

And then refer to "required" from the route:

xml<route> <from uri="activemq:queue:foo"/> <transacted ref="required"/> <to uri="activemq:queue:bar"/> </route>

Database Sample

In this sample we want to ensure that two endpoints is under transaction control. These two endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we have defined a DataSource to the HSQLDB and a most importantly the Spring DataSource TransactionManager that is doing the heavy lifting of ensuring our transactional policies. You are of course free to use any of the Spring based TransactionManager, eg. if you are in a full blown J2EE container you could use JTA or the WebLogic or WebSphere specific managers.

As we use the new convention over configuration we do not need to configure a transaction policy bean, so we do not have any PROPAGATION_REQUIRED beans. All the beans needed to be configured is standard Spring beans only, eg. there are no Camel specific configuration at all.{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/interceptor/springTransactionalClientDataSourceMinimalConfiguration.xml}Then we are ready to define our Camel routes. We have two routes: 1 for success conditions, and 1 for a forced rollback condition.
This is after all based on a unit test. Notice that we mark each route as transacted using the transacted tag.{snippet:id=e2|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/interceptor/springTransactionalClientDataSourceMinimalConfiguration.xml}That is all that is needed to configure a Camel route as being transacted. Just remember to use the transacted DSL. The rest is standard Spring XML to setup the transaction manager.

JMS Sample

In this sample we want to listen for messages on a queue and process the messages with our business logic java code and send them along. Since its based on a unit test the destination is a mock endpoint.

First we configure the standard Spring XML to declare a JMS connection factory, a JMS transaction manager and our ActiveMQ component that we use in our routing.{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-jms/src/test/resources/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.xml}And then we configure our routes. Notice that all we have to do is mark the route as transacted using the transacted tag.{snippet:id=e2|lang=xml|url=camel/trunk/components/camel-jms/src/test/resources/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.xml}

Transaction error handler

When a route is marked as transacted using transacted Camel will automatic use the TransactionErrorHandler as Error Handler. It supports basically the same feature set as the DefaultErrorHandler, so you can for instance use Exception Clause as well.

Integration Testing with Spring

An Integration Test here means a test runner class annotated @RunWith(SpringJUnit4ClassRunner.class).

When following the Spring Transactions documentation it is tempting to annotate your integration test with @Transactional then seed your database before firing up the route to be tested and sending a message in. This is incorrect as Spring will have an in-progress transaction, and Camel will wait on this before proceeding, leading to the route timing out.

Instead, remove the @Transactional annotation from the test method and seed the test data within a TransactionTemplate execution which will ensure the data is committed to the database before Camel attempts to pick up and use the transaction manager. A simple example can be found on GitHub.

Spring's transactional model ensures each transaction is bound to one thread. A Camel route may invoke additional threads which is where the blockage may occur. This is not a fault of Camel but as the programmer you must be aware of the consequences of beginning a transaction in a test thread and expecting a separate thread created by your Camel route to be participate, which it cannot. You can, in your test, mock the parts that cause separate threads to avoid this issue.

Using multiple routes with different propagation behaviors

Available as of Camel 2.2
Suppose you want to route a message through two routes and by which the 2nd route should run in its own transaction. How do you do that? You use propagation behaviors for that where you configure it as follows:

  • The first route use PROPAGATION_REQUIRED
  • The second route use PROPAGATION_REQUIRES_NEW

This is configured in the Spring XML file:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/interceptor/MixedTransactionPropagationTest.xml}Then in the routes you use transacted DSL to indicate which of these two propagations it uses.{snippet:id=e1|lang=java|url=camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/MixedTransactionPropagationTest.java}Notice how we have configured the onException in the 2nd route to indicate in case of any exceptions we should handle it and just rollback this transaction. This is done using the markRollbackOnlyLast which tells Camel to only do it for the current transaction and not globally.

See Also

Using This Pattern

Messaging Gateway

Camel has several endpoint components that support the Messaging Gateway from the EIP patterns.

Components like Bean and CXF provide a a way to bind a Java interface to the message exchange.

However you may want to read the Using CamelProxy documentation as a true Messaging Gateway EIP solution.
Another approach is to use @Produce which you can read about in POJO Producing which also can be used as a Messaging Gateway EIP solution.

 

Example

The following example how the CXF and Bean components can be used to abstract the developer from the underlying messaging system API


Using the Fluent Builders

from("cxf:bean:soapMessageEndpoint")
	.to("bean:testBean?method=processSOAP");

 

Using the Spring XML Extensions

<route>
	<from uri="cxf:bean:soapMessageEndpoint"/>
	<to uri="bean:testBean?method=processSOAP"/>
</route>

See Also

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Service Activator

Camel has several endpoint components that support the Service Activator from the EIP patterns.

Components like Bean, CXF and Pojo provide a a way to bind the message exchange to a Java interface/service where the route defines the endpoints and wires it up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

Here is a simple example of using a Direct endpoint to create a messaging interface to a Pojo Bean service.

Using the Fluent Builders

from("direct:invokeMyService").to("bean:myService");

Using the Spring XML Extensions

<route>
    <from uri="direct:invokeMyService"/>
    <to uri="bean:myService"/>
</route>

See Also

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

System Management

Detour

The Detour from the EIP patterns allows you to send messages through additional steps if a control condition is met. It can be useful for turning on extra validation, testing, debugging code when needed.

Example

In this example we essentially have a route like from("direct:start").to("mock:result") with a conditional detour to the mock:detour endpoint in the middle of the route..

Error formatting macro: snippet: java.lang.NullPointerException

Using the Spring XML Extensions

<route>
  <from uri="direct:start"/>
    <choice>
      <when>
        <method bean="controlBean" method="isDetour"/>
	<to uri="mock:detour"/>
      </when>
    </choice>
    <to uri="mock:result"/>
</route>

whether the detour is turned on or off is decided by the ControlBean. So, when the detour is on the message is routed to mock:detour and then mock:result. When the detour is off, the message is routed to mock:result.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Wire Tap

Wire Tap (from the EIP patterns) allows you to route messages to a separate location while they are being forwarded to the ultimate destination.

Streams

If you Wire Tap a stream message body then you should consider enabling Stream caching to ensure the message body can be read at each endpoint. See more details at Stream caching.

Options

Name

Default

Description

uri

 

Mandatory: The URI of the endpoint to which the wire-tapped message should be sent.

From Camel 2.16: support for dynamic to URIs is as documented in Message Endpoint.

executorServiceRef

 

Reference ID of a custom Thread Pool to use when processing the wire-tapped messages.

When not set, Camel will use an instance of the default thread pool.

processorRef

 

Reference ID of a custom Processor to use for creating a new message.

See "Sending a New Exchange" below.

copy

true

Camel 2.3: Whether to copy the Exchange before wire-tapping the message.

onPrepareRef

 

Camel 2.8: Reference identifier of a custom Processor to prepare the copy of the Exchange to be wire-tapped. This allows you to do any custom logic, such as deep-cloning the message payload.

cacheSize

 

Camel 2.16: Allows to configure the cache size for the ProducerCache which caches producers for reuse. Will by default use the default cache size which is 1000.

Setting the value to -1 allows to turn off the cache all together.

ignoreInvalidEndpoint

false

Camel 2.16: Whether to ignore an endpoint URI that could not be resolved.

When false, Camel will throw an exception when it identifies an invalid endpoint URI.

WireTap Threadpool

The Wire Tap uses a thread pool to process the tapped messages. This thread pool will by default use the settings detailed at Threading Model. In particular, when the pool is exhausted (with all threads utilized), further wiretaps will be executed synchronously by the calling thread. To remedy this, you can configure an explicit thread pool on the Wire Tap having either a different rejection policy, a larger worker queue, or more worker threads.

WireTap Node

Camel's Wire Tap node supports two flavors when tapping an Exchange:

  • With the traditional Wire Tap, Camel will copy the original Exchange and set its Exchange Pattern to InOnly, as we want the tapped Exchange to be sent in a fire and forget style. The tapped Exchange is then sent in a separate thread so it can run in parallel with the original. Beware that only the Exchange is copied - Wire Tap won't do a deep clone (unless you specify a custom processor via onPrepareRef which does that). So all copies could share objects from the original Exchange.
  • Camel also provides an option of sending a new Exchange allowing you to populate it with new values.

Sending a Copy (traditional wiretap)

Using the Fluent Builders{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java}Using the Spring XML Extensions{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringWireTapTest.xml}

Sending a New Exchange

Using the Fluent Builders
Camel supports either a processor or an Expression to populate the new Exchange. Using a processor gives you full power over how the Exchange is populated as you can set properties, headers, etc. An Expression can only be used to set the IN body.

From Camel 2.3: the Expression or Processor is pre-populated with a copy of the original Exchange, which allows you to access the original message when you prepare a new Exchange to be sent. You can use the copy option (enabled by default) to indicate whether you want this. If you set copy=false, then it works as in Camel 2.2 or older where the Exchange will be empty.

Below is the processor variation. This example is from Camel 2.3, where we disable copy by passing in false to create a new, empty Exchange.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapUsingFireAndForgetTest.java}Here is the Expression variation. In the following example we disable copying by setting copy=false which results in the creation of a new, empty Exchange.{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapUsingFireAndForgetTest.java}Using the Spring XML Extensions
The processor variation, which uses a processorRef attribute to refer to a Spring bean by ID:{snippet:id=e2|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringWireTapUsingFireAndForgetTest.xml}Here is the Expression variation, where the expression is defined in the body tag:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringWireTapUsingFireAndForgetTest.xml}This variation accesses the body of the original message and creates a new Exchange based on the Expression. It will create a new Exchange and have the body contain "Bye ORIGINAL BODY MESSAGE HERE"{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringWireTapUsingFireAndForgetCopyTest.xml}

Further Example

For another example of this pattern, refer to the wire tap test case.

Using Dynamic URIs

Available as of Camel 2.16:

For example to wire tap to a dynamic URI, then it supports the same dynamic URIs as documented in Message Endpoint. For example to wire tap to a JMS queue where the header ID is part of the queue name:

from("direct:start") .wireTap("jms:queue:backup-${header.id}") .to("bean:doSomething");

 

Sending a New Exchange and Set Headers in DSL

Available as of Camel 2.8

If you send a new message using Wire Tap, then you could only set the message body using an Expression from the DSL. If you also need to set headers, you would have to use a Processor. From Camel 2.8: it's possible to set headers as well using the DSL.

The following example sends a new message which has

  • Bye World as message body.
  • A header with key id with the value 123.
  • A header with key date which has current date as value.

Java DSL

{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapNewExchangeTest.java}

XML DSL

The XML DSL is slightly different than Java DSL in how you configure the message body and headers using <body> and <setHeader>:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/SpringWireTapNewExchangeTest.xml}

Using onPrepare to Execute Custom Logic when Preparing Messages

Available as of Camel 2.8

See details at Multicast

Using This Pattern

Log

How can I log the processing of a Message?

Camel provides many ways to log the fact that you are processing a message. Here are just a few examples:

  • You can use the Log component which logs the Message content.
  • You can use the Tracer which trace logs message flow.
  • You can also use a Processor or Bean and log from Java code.
  • You can use the log DSL.

Using log DSL

In Camel 2.2 you can use the log DSL which allows you to use Simple language to construct a dynamic message which gets logged.
For example you can do

from("direct:start").log("Processing ${id}").to("bean:foo");

Which will construct a String message at runtime using the Simple language. The log message will by logged at INFO level using the route id as the log name. By default a route is named route-1, route-2 etc. But you can use the routeId("myCoolRoute") to set a route name of choice.

Difference between log in the DSL and [Log] component

The log DSL is much lighter and meant for logging human logs such as Starting to do ... etc. It can only log a message based on the Simple language. On the other hand Log component is a full fledged component which involves using endpoints and etc. The Log component is meant for logging the Message itself and you have many URI options to control what you would like to be logged.

Using Logger instance from the the Registry

As of Camel 2.12.4/2.13.1, if no logger name or logger instance is passed to log DSL, there is a Registry lookup performed to find single instance of org.slf4j.Logger. If such an instance is found, it is used instead of creating a new logger instance. If more instances are found, the behavior defaults to creating a new instance of logger.

Logging message body with streamed messages

If the message body is stream based, then logging the message body, may cause the message body to be empty afterwards. See this FAQ. For streamed messages you can use Stream caching to allow logging the message body and be able to read the message body afterwards again.

The log DSL have overloaded methods to set the logging level and/or name as well.

from("direct:start").log(LoggingLevel.DEBUG, "Processing ${id}").to("bean:foo");

and to set a logger name

from("direct:start").log(LoggingLevel.DEBUG, "com.mycompany.MyCoolRoute", "Processing ${id}").to("bean:foo");

Since Camel 2.12.4/2.13.1 the logger instance may be used as well:

from("direct:start").log(LoggingLeven.DEBUG, org.slf4j.LoggerFactory.getLogger("com.mycompany.mylogger"), "Processing ${id}").to("bean:foo");

For example you can use this to log the file name being processed if you consume files.

from("file://target/files").log(LoggingLevel.DEBUG, "Processing file ${file:name}").to("bean:foo");

Using log DSL from Spring

In Spring DSL it is also easy to use log DSL as shown below:

        <route id="foo">
            <from uri="direct:foo"/>
            <log message="Got ${body}"/>
            <to uri="mock:foo"/>
        </route>

The log tag has attributes to set the message, loggingLevel and logName. For example:

        <route id="baz">
            <from uri="direct:baz"/>
            <log message="Me Got ${body}" loggingLevel="FATAL" logName="com.mycompany.MyCoolRoute"/>
            <to uri="mock:baz"/>
        </route>

Since Camel 2.12.4/2.13.1 it is possible to reference logger instance. For example:

        <bean id="myLogger" class="org.slf4j.LoggerFactory" factory-method="getLogger" xmlns="http://www.springframework.org/schema/beans">
            <constructor-arg value="com.mycompany.mylogger" />
        </bean>

        <route id="moo" xmlns="http://camel.apache.org/schema/spring">
            <from uri="direct:moo"/>
            <log message="Me Got ${body}" loggingLevel="INFO" loggerRef="myLogger"/>
            <to uri="mock:baz"/>
        </route>

Configuring log name globally

Available as of Camel 2.17

By default the log name is the route id. If you want to use a different log name, you would need to configure the logName option. However if you have many logs and you want all of them to use the same log name, then you would need to set that logName option on all of them.

With Camel 2.17 onwards you can configure a global log name that is used instead of the route id, eg

CamelContext context = ...
context.getProperties().put(Exchange.LOG_EIP_NAME, "com.foo.myapp");

And in XML

<camelContext ...>
  <properties>
    <property key="CamelLogEipName" value="com.foo.myapp"/>
  </properties>

 

Using slf4j Marker

Available as of Camel 2.9

You can specify a marker name in the DSL

        <route id="baz">
            <from uri="direct:baz"/>
            <log message="Me Got ${body}" loggingLevel="FATAL" logName="com.mycompany.MyCoolRoute" marker="myMarker"/>
            <to uri="mock:baz"/>
        </route>

Using log DSL in OSGi

Improvement as of Camel 2.12.4/2.13.1

When using log DSL inside OSGi (e.g., in Karaf), the underlying logging mechanisms are provided by PAX logging. It searches for a bundle which invokes org.slf4j.LoggerFactory.getLogger() method and associates the bundle with the logger instance. Passing only logger name to log DSL results in associating camel-core bundle with the logger instance created.

In some scenarios it is required that the bundle associated with logger should be the bundle which contains route definition. This is possible using provided logger instance both for Java DSL and Spring DSL (see the examples above).

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of the Examples first before trying this pattern out.

Error rendering macro 'include'

null

  • No labels